Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

⚠️ DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

⚠️ WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

⚠️ CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

⚠️ NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Flender products

Note the following:

⚠️ WARNING
Flender products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Flender. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of Flender GmbH. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.
Table of contents

1 Introduction ... 9
 1.1 General information .. 9
 1.2 Lubricants .. 10

2 Safety instructions .. 11
 2.1 Security notes .. 11
 2.2 The five safety rules ... 11
 2.3 General information ... 12
 2.4 General warnings and symbols .. 13
 2.5 Special types of danger and personal protective equipment ... 14
 2.6 Intended use .. 16

3 Description .. 19
 3.1 General description ... 19
 3.2 Housing .. 20
 3.3 Oil supply to the gear unit ... 21
 3.4 Bearing arrangement of the shafts ... 21
 3.5 Shaft seals ... 21
 3.5.1 Rotary shaft sealing rings ... 21
 3.5.2 Taconite seal .. 22
 3.6 Backstop .. 23
 3.7 Torque limiting backstop (special version) ... 25
 3.8 Cooling .. 26
 3.8.1 Fan ... 27
 3.8.2 Mounted oil supply system ... 28
 3.8.2.1 Mounted oil supply system with air-oil cooler .. 28
 3.8.2.2 Mounted oil supply system with water-oil cooler .. 29
 3.8.2.3 Pump ... 30
 3.8.2.4 Oil filter .. 30
 3.8.2.5 Pressure monitor ... 30
 3.8.3 Separate oil supply system .. 31
 3.9 Couplings .. 31
 3.10 Shrink disk .. 31
 3.11 Heating ... 32
 3.12 Oil level indicator .. 33
 3.13 Oil temperature monitoring system .. 34
Table of contents

3.14 Bearing monitoring ... 34
3.14.1 Bearing monitoring using a Pt 100 resistance thermometer .. 34
3.14.2 Bearing monitoring by shock-pulse transducer .. 35
3.14.3 Bearing monitoring using acceleration sensor .. 36
3.15 Speed encoder .. 37
3.16 FLENDER GEARLOG .. 38

4 Application planning ... 39

4.1 Scope of delivery .. 39
4.2 Transport .. 39
4.3 Attachment points .. 41
4.4 Special aspects relating to lubrication .. 43
4.4.1 Oil filling and oil drain ... 43

5 Assembly .. 45

5.1 General assembly instructions ... 45
5.2 Unpacking the gear unit ... 46
5.3 Gear unit assembly ... 47
5.3.1 Foundation .. 47
5.3.2 Measures prior to mounting ... 48
5.3.3 Mounting on a mounting flange or block flange ... 49
5.3.3.1 Mating flange on the machine side ... 49
5.3.3.2 Assembly .. 50
5.3.4 Mounting the torque arm and the gear unit base ... 52
5.3.4.1 One-sided torque arm .. 53
5.3.4.2 Double-sided torque arm ... 53
5.3.4.3 Gear unit base ... 54
5.4 Couplings ... 56
5.4.1 Mounting the coupling ... 56
5.4.2 Aligning the coupling ... 58
5.5 Connecting components ... 60
5.5.1 Gear units with mounted components ... 60
5.5.2 Connecting the air-oil cooler ... 61
5.5.3 Connecting the water-oil cooler ... 61
5.5.4 Connecting the separate oil supply system ... 62
5.5.5 Connecting the pressure monitor ... 62
5.5.6 Connecting the heating element .. 63
5.5.7 Connecting the Pt 100 resistance thermometer .. 63
5.5.8 Connecting the bearing monitoring ... 63
5.5.9 Connecting a speed encoder ... 64
5.5.10 Electrical connections ... 64
5.5.11 Mounting connecting hoses ... 65
5.6 Tightening procedure ... 65
5.6.1 Introduction .. 65
5.6.2 Bolt connection classes ... 66
5.6.3 Tightening torques and preload forces ... 66
5.6.4 Tightening torques for flange connection and version with a base 68
Table of contents

6 Commissioning...71
 6.1 Measures prior to commissioning ...71
 6.1.1 Gear unit with backstop...71
 6.1.2 Gear unit with oil supply system..72
 6.2 Measures during commissioning ...72
 6.2.1 Gear unit with backstop...73
 6.2.2 Temperature measurement..73
 6.2.3 Bearing monitoring (vibration measurement) ...73
 6.2.4 Gear units with heating ...73

7 Operation...75
 7.1 Operating data ...75
 7.2 Anomalies ..75
 7.3 Taking the unit out of service ...76

8 Servicing...77
 8.1 Maintenance schedule ...77
 8.2 Service and maintenance work ..78
 8.2.1 Checking the oil temperature ...78
 8.2.2 Replacing the backstop ..79
 8.2.3 Filling the backstop with oil ..79
 8.2.4 Checking the friction linings of the torque-limiting backstop ...80
 8.2.5 Measuring the vibration levels of the rolling-contact bearings ...81
 8.2.6 Cleaning the fan and gear unit...81
 8.2.7 Cleaning the coarse filter ...82
 8.2.8 Inspecting the shrink disk ...82
 8.2.9 General inspection ...82
 8.2.10 Checking that the fastening bolts are tight ...83
 8.3 Possible faults ...83

9 Service & Support...89

10 Disposal...91

11 Spare parts...93

A Quality documents..95
 A.1 Declaration of incorporation ..95

B Technical data ..97
 B.1 General technical data ...97
 B.2 Ambient temperature ...98
 B.3 Types ...99
 B.4 Weights ...99
 B.5 Enveloping surface sound pressure level ...100

Index..101
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2-1</td>
<td>Symbols and markings</td>
<td>12</td>
</tr>
<tr>
<td>Table 2-2</td>
<td>General warnings</td>
<td>13</td>
</tr>
<tr>
<td>Table 3-1</td>
<td>Information about the specific heat output</td>
<td>32</td>
</tr>
<tr>
<td>Table 4-1</td>
<td>Information about the connection threads for sling swivels</td>
<td>43</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>Information on screwing fastening bolts</td>
<td>66</td>
</tr>
<tr>
<td>Table 5-2</td>
<td>Preload forces and tightening torques</td>
<td>67</td>
</tr>
<tr>
<td>Table 5-3</td>
<td>Tightening torques</td>
<td>69</td>
</tr>
<tr>
<td>Table 7-1</td>
<td>Operating data</td>
<td>75</td>
</tr>
<tr>
<td>Table 8-1</td>
<td>Maintenance and servicing activities</td>
<td>77</td>
</tr>
<tr>
<td>Table 8-2</td>
<td>Possible faults and how to rectify them</td>
<td>83</td>
</tr>
<tr>
<td>Table B-1</td>
<td>Weights</td>
<td>99</td>
</tr>
<tr>
<td>Table B-2</td>
<td>Enveloping surface sound pressure level</td>
<td>100</td>
</tr>
</tbody>
</table>

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3-1</td>
<td>Gear unit equipment</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3-2</td>
<td>Rotary shaft sealing ring</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3-3</td>
<td>Taconite seal</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3-4</td>
<td>Backstop</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3-5</td>
<td>Torque limiting backstop</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3-6</td>
<td>Fan mounted on a gear unit</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3-7</td>
<td>Oil temperature monitoring system</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3-8</td>
<td>Bearing monitoring using a Pt 100 resistance thermometer</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3-9</td>
<td>Fully assembled acceleration sensor (A), and threaded connector (B) for variants 1 to 4</td>
<td>36</td>
</tr>
<tr>
<td>Figure 3-10</td>
<td>Complete acceleration sensor (C), and threaded connector (D) for versions 5A and 5B</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3-11</td>
<td>Threaded connector 1/4"-28UNF-2B</td>
<td>37</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Transport symbols</td>
<td>41</td>
</tr>
<tr>
<td>Figure 4-2</td>
<td>Oil filling locations and oil drain locations</td>
<td>44</td>
</tr>
<tr>
<td>Figure 4-3</td>
<td>Gear unit with backstop</td>
<td>44</td>
</tr>
<tr>
<td>Figure 5-1</td>
<td>One-sided torque arm</td>
<td>53</td>
</tr>
<tr>
<td>Figure 5-2</td>
<td>Double-sided torque arm</td>
<td>54</td>
</tr>
<tr>
<td>Figure 5-3</td>
<td>Gear unit foot</td>
<td>55</td>
</tr>
<tr>
<td>Figure 5-4</td>
<td>Possible misalignments</td>
<td>59</td>
</tr>
<tr>
<td>Figure 5-5</td>
<td>Alignment process based on the example of a flexible coupling</td>
<td>60</td>
</tr>
<tr>
<td>Figure 5-6</td>
<td>Flange connection and version with base</td>
<td>68</td>
</tr>
<tr>
<td>Figure 8-1</td>
<td>Torque limiting backstop</td>
<td>80</td>
</tr>
<tr>
<td>Figure B-1</td>
<td>Rating plate</td>
<td>97</td>
</tr>
</tbody>
</table>
1.1 General information

Purpose of the operating instructions

These operating instructions describe the gear unit and provide information about handling it - from assembly to maintenance.

Please keep these operating instructions for later use. Please read these operating instructions prior to handling the gear unit and follow the information in them.

Disclaimer

Please make sure that every person who is commissioned to work on the gear unit has read and understood these operating instructions prior to handling the gear unit and adheres to all of the points. Failure to observe these operating instructions can cause product or property damage or personal injury.

Flender does not accept any liability for damage or operating failures which are due to non-adherence to these operating instructions.

The gear unit described in these instructions reflects the state of technical development at the time these operating instructions went to print.

In the interest of technical advancements, Flender reserves the right to make changes to the individual components and accessories which are considered necessary for improving their performance and safety, while maintaining their essential features.

Basic knowledge required

In order to understand these operating instructions, you will need the following general knowledge about gear units. You will also need a basic understanding of the following topics:

- Application planning
- Assembly
- Commissioning
- Maintenance

Documentation landscape

These operating instructions form part of the delivery of your gear unit.
These operating instructions form part of the complete documentation supplied with the gear unit. The complete documentation encompasses other documents, including:

- Data sheet
- List of equipment
- Dimension drawing
- Operating instructions for gear unit lubrication and preservation BA 7300
- Operating instructions for mounted components
- Operating instructions for devices and equipment from third-party suppliers

Copyright

The copyright for these operating instructions is held by Flender.

Without the authorisation of Flender, these operating instructions may not be used wholly or in parts for competitors' purposes or be given to third parties.

If you have any technical queries, please contact one of our Customer Services addresses (Page 89).

1.2 Lubricants

The quality of the oil used must meet the requirements of the operating instructions BA 7300, which is provided as a separate item, otherwise the warranty provided by Flender will be void. Flender urgently recommends using one of the oils listed in BA 7300, all of which have been appropriately tested and meet the requirements.

To avoid misunderstandings, Flender points out that, by making this recommendation, Siemens is not approving the product in the sense of expressing a warranty for the quality of the lubricants supplied by your supplier. Each lubricant manufacturer must provide a warranty for the quality of its own product.

You will find the oil grade, oil viscosity and the required quantity of oil on the rating plate of the gear unit and in the documentation provided with it.

The quantity of oil specified on the rating plate is an approximate quantity. The decisive factors for the quantity of oil to be filled are the marking of the oil dipstick or oil sight glass.

The operating instructions for the current lubricant recommendations of Flender can also be viewed in the Internet (https://www.flender.com/lubricants).

The oils listed there are constantly tested. For this reason, oils recommended there may be removed later or replaced with further developed oils.

Flender recommends regular inspection to ascertain whether the selected lubricating oil is still approved by Flender. If it is not, a different make should be used instead.
2.1 Security notes

Flender offers products and solutions with industrial security functions, which support the safe and secure operation of plants, systems, machines and networks.

In order to safeguard plants, systems, machines and networks against cyber threats it is necessary to implement (and continually maintain) a holistic industrial security concept that corresponds to the current state of the art. Flender products and solutions undergo continuous development in this respect.

Customers are responsible for preventing unauthorised access to their plants, systems, machines and networks. Systems, machines and components shall only be connected to the company network or the Internet when and as far as this is absolutely necessary and appropriate protective measures (e.g. use of firewalls and network segmentation) shall be taken.

In addition the recommendations of Siemens regarding appropriate protective measures shall be observed. You can find further information about Industrial Security at: https://www.siemens.com/industrialsecurity

Flender products and solutions undergo continuous development in order to make them even safer. Flender strongly recommends that you regularly carry out any updates as soon as they are available and that you only use the current product versions. Use of older or no longer supported versions can increase the risk of cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed at: https://www.siemens.com/industrialsecurity

2.2 The five safety rules

For your personal safety and to avoid damage to property, observe the safety relevant information and the following five safety rules defined in EN 50110-1 "Dead working" when working on the electrical components of the installation.

Before commencing work on the machine, apply the following safety rules:

1. Disconnect completely
 Also disconnect the auxiliary circuits, such as the anti-condensation heater
2. Secure against reconnection
3. Verify that the installation is dead
4. Earth and short circuit
5. Cover or cordon off adjacent live parts

After completion of the work, remove these precautions in the reverse order.
2.3 General information

Introduction

All work on the gear unit should be performed with care and only by qualified personnel.

Symbols on the gear unit

The following symbols apply to the gear unit; some of which are found as coloured markings on the gear unit:

Table 2-1 Symbols and markings

<table>
<thead>
<tr>
<th>Points labelled on the gear unit</th>
<th>Symbol</th>
<th>Coloured markings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth connection point</td>
<td>![Symbol]</td>
<td></td>
</tr>
<tr>
<td>Air relief point</td>
<td>![Symbol]</td>
<td>yellow</td>
</tr>
<tr>
<td>Oil filling point</td>
<td>![Symbol]</td>
<td>yellow</td>
</tr>
<tr>
<td>Oil draining point</td>
<td>![Symbol]</td>
<td>white</td>
</tr>
<tr>
<td>Oil level indicator</td>
<td>![Symbol]</td>
<td>red</td>
</tr>
<tr>
<td>Oil level measurement</td>
<td>![Symbol]</td>
<td>red</td>
</tr>
<tr>
<td>Oil overflow</td>
<td>![Symbol]</td>
<td></td>
</tr>
<tr>
<td>Connection point for vibration monitoring</td>
<td>![Symbol]</td>
<td></td>
</tr>
<tr>
<td>Lubrication point</td>
<td>![Symbol]</td>
<td>red</td>
</tr>
<tr>
<td>Apply grease</td>
<td>![Symbol]</td>
<td></td>
</tr>
<tr>
<td>Lifting eye</td>
<td>![Symbol]</td>
<td></td>
</tr>
<tr>
<td>Eye bolt</td>
<td>![Symbol]</td>
<td></td>
</tr>
<tr>
<td>Do not unscrew</td>
<td>![Symbol]</td>
<td></td>
</tr>
</tbody>
</table>

Safety instructions
2.4 General warnings and symbols

The following table contains general warnings and their associated symbols.

<table>
<thead>
<tr>
<th>ISO</th>
<th>ANSI</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚨</td>
<td>🚨</td>
<td>Warning - hazardous electrical voltage</td>
</tr>
<tr>
<td>🚨</td>
<td>⋆</td>
<td>Warning - explosive substances</td>
</tr>
<tr>
<td>⋆</td>
<td>⋆</td>
<td>Warning - entanglement hazard</td>
</tr>
<tr>
<td>⋆</td>
<td>⋆</td>
<td>Warning - hot surfaces</td>
</tr>
<tr>
<td>⋆</td>
<td>⋆</td>
<td>Warning - substances that are harmful to health or are irritants</td>
</tr>
<tr>
<td>⋆</td>
<td>⋆</td>
<td>Warning - corrosive substances</td>
</tr>
<tr>
<td>⋆</td>
<td>⋆</td>
<td>Warning - suspended load</td>
</tr>
<tr>
<td>⋆</td>
<td>⋆</td>
<td>Warning - hand injuries</td>
</tr>
<tr>
<td>🚨 Ex</td>
<td>🚨 Ex</td>
<td>ATEX certification</td>
</tr>
</tbody>
</table>
2.5 Special types of danger and personal protective equipment

Requirements

Fulfil the following requirements before commencing work on the gear unit:

- Ensure that the oil pressure lines are depressurised.
- Only perform work on the gear unit when it is not in operation.
- Disconnect electrical systems from the power supply.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric shock</td>
</tr>
<tr>
<td>Energised parts can cause an electric shock.</td>
</tr>
<tr>
<td>Ensure that the entire plant is de-energised before starting electrical installation work.</td>
</tr>
</tbody>
</table>

Protective equipment

Wear the following personal protective equipment when handling the gear unit:

- Safety shoes
- Overalls
- Helmet
- Safety gloves
- Safety goggles

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of eye injury</td>
</tr>
<tr>
<td>Small foreign particles such as sand or dust can enter the cover plates of the rotating parts and be hurled back by them.</td>
</tr>
<tr>
<td>Wear safety goggles.</td>
</tr>
</tbody>
</table>

Dangers during operation

Damage to the gear unit is possible.
Switch the gear unit to standstill immediately if inexplicable changes are noticed during operation. Such changes may include unusual gear unit noise or a significant increase in operating temperature.

WARNING

Risk of falling
There is an increased risk of falling when standing or walking on the gear unit during operation. Only walk or stand on the gear unit or its mounted components for maintenance and repair work when the gear unit is at a standstill. Do not walk or stand on shaft ends, protection covers, mounted components or pipes.

WARNING

Danger to life due to rotating or moving parts
There is danger that rotating or moving parts may catch hold of you or pull you in. Rotating or moving parts must be fitted with suitable safeguards to prevent contact.

Surface temperature

The surface temperatures of the gear unit can become very extreme depending on the operating conditions.

WARNING

Risk of burns
Possible risk of serious burn injury from hot surfaces (> 55 °C). Wear suitable protective gloves and protective clothing.

WARNING

Risk of scalding
Risk of serious injury possible through escaping hot operating media when these are being changed. Wear suitable protective gloves, safety goggles and protective clothing.

WARNING

Danger due to low temperatures
Possible risk of serious injuries due to frost (pain, numbness, frostbite) on cold surfaces (< 0 °C). Wear suitable protective gloves and protective clothing.

Safety instructions

2.6 Intended use

Chemical substances

Injuries can be sustained when using chemical substances.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of chemical burns from chemical substances</td>
</tr>
<tr>
<td>There is a risk of chemical burns when handling aggressive cleaning agents. Please observe the manufacturer’s guidelines on how to handle cleaning agents and solvents. Wear suitable personal protective equipment (gloves, safety goggles). Please use binding agents to immediately clear up any spilt solvent.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of injury due to chemically aggressive operating materials</td>
</tr>
<tr>
<td>There is a risk of injury to eyes and hands when handling chemically corrosive consumables. Please observe the safety instructions in the data sheets of the oil used. Wear suitable personal protective equipment (gloves, safety goggles). Use an oil-binding agent to immediately clean up spilt oil.</td>
</tr>
</tbody>
</table>

Danger of explosion

An explosion may occur in a potentially explosive atmosphere.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger of explosion though ignition of a potentially explosive atmosphere</td>
</tr>
<tr>
<td>Danger to life though ignition of a potentially explosive atmosphere possible when operating the gear unit. Do not use the gear unit in potentially explosive atmospheres.</td>
</tr>
</tbody>
</table>

2.6 Intended use

Only use the gear unit according to the conditions specified in the service and delivery contract and the technical data (Page 97) in the Annex. Deviating operating conditions are considered improper use. The user or owner of the machine or plant is solely liable for any resulting damage.
When using the gear unit please specifically observe the following:

- Do not make any modifications to the gear unit that go beyond the permissible handling described in these operating instructions. This also applies to safety features designed to prevent accidental contact.

- Only ever use original spare parts. Other spare parts are not tested and approved by Flender. Non-approved spare parts may possibly change the design characteristics of the gear unit and thus impair its active or passive safety. Flender will accept no liability or warranty whatsoever for damage occurring as a result of the use of non-approved spare parts. The same applies to any accessories which were not supplied by Flender.

If you have any queries, please contact Customer Service (Page 89).

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of falling</td>
</tr>
<tr>
<td>Risk of possible serious injury through falling.</td>
</tr>
<tr>
<td>Only walk or stand on the gear unit for maintenance and repair work when it is at a standstill. Do not walk or stand on shaft ends, protection covers, mounted components or pipes.</td>
</tr>
</tbody>
</table>

Gear unit use

When using the gear unit, please observe the following basic rules:

- Ensure that the gear unit is operationally safe.

- The gear unit must only be operated, maintained or repaired by authorised, trained, instructed and qualified personnel.

- The relevant work safety and environmental protection regulations must be complied with at all times during transport, mounting, dismantling, operation, maintenance and servicing.

- The outside of the gear unit must not be cleaned using high-pressure cleaning equipment.

- No welding work must be performed on the gear unit or on parts connected to it. The gear unit and any parts connected to it must not be used as an earthing point for electric-welding operations. Toothed parts and rolling-contact bearings may be irreparably damaged by welding.

- Perform potential equalisation in accordance with the applicable regulations and guidelines. If no threaded holes are available on the gear unit for an earth connection, please take suitable measures. This work must always be done by specialist electricians.

- In the case of gear units that are operated in combination with electrical machines that generate current or through which current flows (e.g. motors and generators), take measures to ensure that no current can flow through the gear unit. Current flowing through the gear unit can result in irreparable damage to rolling-contact bearings and gearing. Short circuits, voltage flashovers and deposits of conductive dust, for example, can all allow current to flow. Earth the gear unit properly.

- When removing any protective devices, retain their fixings safely.
2.6 Intended use

- Removed protective devices must be re-fitted prior to starting up.
- Observe the notices mounted on the gear unit, e.g. rating plate, direction arrow symbol, etc. The notices must be kept free from paint or dirt. Replace missing plates.
- Bolts which have been damaged during mounting or dismantling work must be replaced with new ones of the same strength class and type.

DANGER

Danger to life due to live system

Death or serious injury will occur.

Always shut down the gear unit and any oil supply system (whether separate or mounted on the gear unit) before you perform any work. Adopt one of the following measures to prevent the drive unit from being operated inadvertently:

- Turn off the key-operated switch.
- Remove the fuses in the power supply.

Attach a notice to the start switch, clearly stating that work is being carried out on the gear unit. Makes sure that the entire system is not under a load to avoid danger during dismantling work.

Reactivating the gear unit

When the machine or system manufacturers install the gear unit in machines or systems, they must ensure that the instructions, notes and descriptions contained in these operating instructions are incorporated in their own operating instructions.
3.1 General description

The FLENDER® planetary gear unit, abbreviated to “gear unit” in these operating instructions, has been designed to power industrial machines in the most diverse range of sectors.

The range of potential applications for gear units in this series includes drainage systems, excavators, the chemical industry, foundries, conveyors, crane systems, the food industry, paper-processing machines, roller presses, cable cars and the cement industry.

The gear unit is supplied as a two-stage or three-stage planetary gear unit. It is designed for horizontal and vertical mounting. The gear unit can also be supplied for other mounting orientations.

The gear unit can always be operated in both directions of rotation.

Depending on the specific contract, the gear unit can have just one direction of rotation if it is equipped with a backstop or overrunning clutch.

Depending the type and size, gear units in the standard range can be equipped with a motor bell housing, oil cooler, oil level indicator, temperature sensor, and backstop.

The following diagram shows the equipment of the planetary gear unit:

![Gear unit equipment diagram]

Figure 3-1 Gear unit equipment

- 1. Shaft seal
- 2. Threads for transport lugs
- 3. Fastening for torque arm
- 4. Shrink disk
- 5. Rating plate
Designation of the possible shaft positions of the gear units

Various mounting positions are possible. These are shown schematically below for gear units with a solid shaft, each with its own code number.

<table>
<thead>
<tr>
<th>Code</th>
<th>Horizontal mounting orientation of the gear unit</th>
<th>Vertical mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>513</td>
<td></td>
<td></td>
</tr>
<tr>
<td>514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>910</td>
<td></td>
<td></td>
</tr>
<tr>
<td>610</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2 Housing

Introduction

The housing is usually made of cast iron but can be made of spheroidal cast iron or steel, if required.

The gear unit housing has the following features:

- Attachment points for moving the gear unit
- Inspection cover for inspection
- Oil filling point for refilling with oil
- Oil sight glass, oil level indicator or dipstick for checking the oil level
• Oil drain screw for changing the oil
• Air filter or wet-air filter for ventilation and bleeding

Further information
You will find further information and a detailed illustrated description of the gear unit in the dimension drawing.

3.3 Oil supply to the gear unit
The following oil supply versions are possible:
• Splash lubrication
• Pressure lubrication
• Circulating-oil lubrication
The gear teeth and rolling-contact bearings are supplied with sufficient oil in the gear units.
For safety reasons, the gear unit is shipped without an oil filling.

3.4 Bearing arrangement of the shafts
All shafts are mounted in rolling-contact bearings.

3.5 Shaft seals
Depending on requirements, shaft seals prevent oil from escaping from the gear unit or dirt from entering the gear unit.

3.5.1 Rotary shaft sealing rings
Rotary shaft sealing rings are the standard seal used. Wherever possible, rotary shaft sealing rings are equipped with an additional dust lip which protects the actual sealing lip against external contaminants.

NOTICE
Irreparable damage to the rotary shaft sealing ring caused by high concentration of dust
A damaged rotary shaft sealing ring might not be able to effectively seal the gear unit.
In very dusty atmospheres, do not use rotary shaft sealing rings unless they have additional protection.
The diagram below shows a rotary shaft sealing ring:

![Diagram of rotary shaft sealing ring](image)

Figure 3-2 Rotary shaft sealing ring

3.5.2 Taconite seal

The taconite seal is a combination of two sealing elements:

- Rotary shaft sealing ring to prevent the escape of lubricating oil
- Grease-filled dust seal (comprising a labyrinth and a lamellar seal) to allow operation of the gear unit in extremely dusty environments

The taconite seal is ideal for use in dusty environments.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear unit leaks caused by poor sealing</td>
</tr>
</tbody>
</table>

Ensure that the labyrinths are regreased at the defined regreasing intervals. The regreasing intervals are specified in the maintenance schedule (Page 77).

A taconite seal is illustrated in the diagram below:

![Diagram of taconite seal](image)

Figure 3-3 Taconite seal

- ① Labyrinth, filled with grease, can be regreased
- ② Grease nipple
- ③ Lamellar seal
- ④ Rotary shaft sealing ring
NOTICE

<table>
<thead>
<tr>
<th>Sparking, inadmissible temperature rise and shaft seal wear due to insufficient gap dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparking, inadmissible temperature rise and wear of the shaft seal due to insufficient gap dimension are possible.</td>
</tr>
<tr>
<td>In the case of a shaft seal with taconite seals, ensure that the set gap dimension of 1(\pm 0.5) mm on the grease labyrinth is not changed when the input and output elements (e.g. coupling parts) are mounted. Rotating and stationary parts must not touch.</td>
</tr>
</tbody>
</table>

3.6 Backstop

Introduction

For some requirements, the gear unit can be equipped with a mechanical backstop. In operation, the backstop only permits the specified direction of rotation. The direction of rotation is specified at the gear unit input - and - output using an arrow.

The backstop is mounted to the gear unit through an intermediate flange creating an oil tight seal; the backstop is integrated in the gear unit oil circuit.

Principle of operation

The backstop is fitted with centrifugally-operated sprags. If the gear unit rotates in the specified direction, the inner ring rotates together with the sprag cage in the direction of rotation of the shaft, while the outer ring remains stationary. Above a certain speed (disengagement speed) the sprags disengage from the outer ring. In this operating state, the backstop operates without any wear.
The diagram below shows a backstop:

![Diagram of a backstop]

1. Cover
2. Outer ring
3. Inner ring
4. Shaft
5. Cage with sprags
6. Residual oil drain

Figure 3-4 Backstop

The blocking direction of the backstop can be changed by turning over the cage. You must always contact Flender in advance if you wish to change the blocking direction.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage to or destruction of the backstop and gear unit due incorrect direction of rotation</td>
</tr>
<tr>
<td>Do not run the motor in the opposite direction to the blocking direction of the gear unit.</td>
</tr>
<tr>
<td>Observe the note attached to the gear unit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage to or destruction of the backstop as a result of increased wear for operation below disengagement speeds</td>
</tr>
<tr>
<td>You must regularly replace the backstop if you operate the gear unit at speeds below the disengagement speed of the backstop.</td>
</tr>
<tr>
<td>You will find data indicating the replacement intervals in the dimension drawing and on a plate attached to the gear unit. This plate is attached to the gear unit housing close to the backstop.</td>
</tr>
</tbody>
</table>
3.7 Torque limiting backstop (special version)

Introduction
A torque-limiting backstop is available for special applications, e.g. for twin drives. This backstop is a combination of a backstop with centrifugally-operated sprags and a brake.

Principle of operation
The slipping torque is adjusted using a number of springs. As a result of the "slippage", the gear unit and the sprags of the backstop are protected against inadmissibly high stresses when rotating backwards. In addition, for twin drives, the load is uniformly distributed across both gear units when rotating backwards.

The following diagram shows a torque-limiting backstop:

![Torque limiting backstop diagram]

1. Outer ring
2. Guide screw with compression spring
3. Locking wire
4. Shaft (intermediate flange)
5. Inner ring
6. Cage with sprags
7. Friction lining

Figure 3-5 Torque limiting backstop
Changing the stop direction

You can change the blocking direction of the backstop by turning over the cage. You must always contact Flender in advance if you wish to change the blocking direction.

NOTICE

<table>
<thead>
<tr>
<th>Damage to the backstop and gear unit due incorrect direction of rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not run the motor in the opposite direction to the blocking direction of the gear unit.</td>
</tr>
<tr>
<td>Observe the note attached to the gear unit.</td>
</tr>
</tbody>
</table>

Slipping torque

The torque limiting backstop is mounted on the gear unit through an intermediate flange, creating an oil tight seal; the backstop is integrated in the gear unit oil circuit.

The guide screws of the springs are locked using locking wire so that the slipping torque that has been adjusted cannot be changed. The warranty is null and void if the locking wire for the screws is either missing or damaged.

Generally, the backstop operates without any wear. As a preventive measure, dimension “x\textsubscript{min}” should be checked each time that the backstop is actuated (only type FXRT) - and then it should be checked every 12 months.

WARNING

<table>
<thead>
<tr>
<th>Risk of injury as a result of moving system parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a risk that after the motor is switched off the load cannot be securely kept in position, and that it can accelerate in the reverse direction.</td>
</tr>
<tr>
<td>The slipping torque has been set to the correct value in the factory and must not be changed.</td>
</tr>
</tbody>
</table>

3.8 Cooling

Introduction

Depending on the actual requirement, the planetary gear unit can be equipped with the following cooling types:

- Fan
- Air-oil cooler
- Water-oil cooler
- Separate oil supply system
When installing the gear unit, make sure that unhindered convection across the housing surface is possible to protect the gear unit against overheating.

3.8.1 Fan

Principle of operation

Generally, the fan is mounted on the high-speed shaft of the gear unit and is protected from accidental contact by an air guide cover. The fan draws in air through the protective grille of the air guide cover and blows it along the lateral air ducts on the gear unit housing. The fan dissipates a certain amount of heat from the housing.

The cooling effect is considerably reduced by dirt on the fan and the surface of the housing.

Observe the cleaning information in chapter Cleaning the fan and gear unit (Page 81).

A fan mounted on a gear unit is illustrated in the diagram below:

![Diagram of Fan Mounted on Gear Unit](image)

1. Fan
2. Air guide cover

NOTICE

Overheating of the gear unit due to insufficient air supply

For gear units fitted with a fan, ensure sufficient clearance for the air intake when mounting safety guards for the coupling or other similar components.

You will find the clearance required in the dimension drawing, which is part of the complete documentation of the gear unit.

Ensure that the air guide cover is correctly fastened. The air guide cover must be protected against external damage. Ensure that the fan does not come into contact with the air guide cover.

Further information

You will find further information and a detailed illustration of the gear unit and the position of the mounted components in the dimension drawings, which are part of the complete documentation of the gear unit.
3.8.2 Mounted oil supply system

3.8.2.1 Mounted oil supply system with air-oil cooler

Introduction

Depending on the order specification, an oil supply system with air-oil cooler can be used. This oil cooling system is mounted on the gear unit.

Principle of operation

The air-oil cooler is used to cool the gear unit oil; the ambient air is used as coolant. The oil is fed through the cooler in one or more channels, depending on the volume flowrate, and is guided past the ambient air blown through the cooler by the fan. For cold starts, a bypass pipe with a temperature-controlled valve is provided.

A mounted oil supply system with air-oil cooler can include the following components:

- Air-oil cooler
- Flange pump
- Double change-over filter or coarse filter
- Pressure monitor
- Temperature control valve
- Pipes

Note

Observe the flow direction of the pump

When connecting the valves, observe the flow direction of the pump.

See the documentation to find out whether the flow direction of the pump used depends on the direction of rotation.

NOTICE

Overheating of the gear unit due to insufficient air supply

When installing a gear unit with mounted air-oil cooler, ensure that air can freely circulate. You will find the necessary minimum clearance to adjacent components, such as walls and panels, in the dimension drawing in the complete documentation of the gear unit.
NOTICE

Overheating of the gear unit due to the thermally insulating effect of dirt

Overheating of the gear unit due to the thermally insulating effect of a layer of dirt on the gear unit or a dirty fan is possible.

The cooling effect is considerably reduced by dirt on the fan and the surface of the case.

Cleaning information is provided in chapter Cleaning the fan and gear unit (Page 81).

Further information

You will find further information, such as connection dimensions and a detailed illustrated description of the gear unit and the oil supply system with air-oil cooler, in the dimension drawing, which is part of the complete documentation of the gear unit.

You will find further information about the oil supply system in a separate data sheet, in the list of equipment and in the operating instructions for the oil supply system, which are part of the complete documentation of the gear unit.

3.8.2.2 Mounted oil supply system with water-oil cooler

Introduction

Depending on the order specification, an oil supply system with water-oil cooler can be used. This oil cooling system is mounted on the gear unit.

Principle of operation

The water-oil cooler is used to cool the gear unit oil; water is used as coolant.

The operating company must establish the cooling water connection required.

NOTICE

Overheating of the gear unit due to incorrect direction of flow in the water-oil cooler

The cooling water pressure must not exceed 8 bar.

To achieve optimum cooling power, the defined direction of flow of the water-oil cooler must be maintained. The intake and outlet for the cooling water must not be interchanged.

If there is risk of freezing, you must drain the cooling water and blow out any residual water with compressed air.

Do not exceed the pressure and temperature values specified in the data sheet and/or device list. Check the values before commissioning.
WARNING

Risk of eye injury from compressed air
Water residue and dirt particles can cause damage to eyes.
Wear suitable safety goggles.

Further information

You will find further information, such as connection dimensions and a detailed illustrated description of the gear unit and the oil supply system with water-oil cooler, in the dimension drawing, which is part of the complete documentation of the gear unit.

You will find further information about the oil supply system, such as the required quantity of cooling water and the maximum permissible water intake temperature, in the separate data sheet, in the list of equipment and in the operating instructions for the oil supply system, which are part of the complete documentation of the gear unit.

3.8.2.3 Pump

Requirements placed on the medium being pumped

The pump being used is suitable for pumping lubricating oil. It is not permissible that the oil contains abrasive components and must not chemically corrode the materials used in the pump. Clean oil with good lubricating properties is a precondition for ensuring the correct function, high operational reliability and long service life of the pump.

3.8.2.4 Oil filter

Introduction

The oil filter protects downstream units, measuring and control devices against dirt and pollution.

Principle of operation

The oil filter comprises a housing with connections and a filter cartridge. The medium flows through the filter housing, where, depending on the filter mesh size, most of the dirt particles larger than a defined size in the oil are filtered out. Dirty filter cartridges must be cleaned or replaced.

3.8.2.5 Pressure monitor

The pressure of the mounted oil supply system is monitored using a pressure monitor.
Further information

You will find further information on the pressure monitor in the pressure monitor operating instructions, which are part of the complete documentation of the gear unit.

You will find further technical data in the separate data sheet and in the list of equipment, which are part of the complete documentation of the gear unit.

3.8.3 Separate oil supply system

A separate oil supply system can be used to cool the oil.

Further information

You will find further information about separate oil supply systems in the operating instructions for the oil supply system, which are part of the complete documentation of the gear unit.

You will find further information about the components of the oil supply system in the operating instructions for the components, which are part of the complete documentation of the gear unit.

You will find further technical data in the separate data sheet and in the list of equipment, which are part of the complete documentation of the gear unit.

3.9 Couplings

Elastic couplings are provided for the gear unit input and/or output. If rigid couplings are to be used or other input and/or output elements that exert additional radial or axial forces (e.g. gear wheels, belt pulleys, flywheels, or hydraulic couplings), this must be contractually agreed in advance.

Couplings with circumferential velocities on the outer diameter of up to 30 m/s must be statically balanced. Couplings with circumferential velocities above 30 m/s require dynamic balancing.

When the drives are installed, the individual components must be precisely aligned with each other to minimise restoring forces due to angular and axial misalignments and to prevent premature wear of elastic coupling elements.

Further information

You will find further information on the coupling in the operating instructions for the coupling.

3.10 Shrink disk

A shrink disk is provided as a frictional clamping connection between the gear unit hollow shaft and the driven machine on shaft-mounted gear units.

The shrink disk allows an interference fit to be created between a hollow shaft and a stub shaft (machine shaft), referred to hereafter as "stub shaft". The interference fit is capable of
transmitting torques, bending moments and forces. Crucial to the successful transmission of torques and/or power is the joint pressure between the hollow and stub shafts generated by the shrink disk.

Further information

You will find further information about the shrink disk in the operating instructions for the shrink disk. These operating instructions are included in the complete documentation of the gear unit.

3.11 Heating

Introduction

At low temperatures, it may be necessary to preheat the gear unit oil before the drive is switched on or also during operation.

Heating elements

Heating elements can be used for these applications, for example. Heating elements convert electricity into heat and transfer this to the oil in which they are immersed. The heating elements are installed in protective tubes in the housing so that they can be replaced without draining off the oil first.

Complete immersion of the heating elements in the oil bath must be ensured by adhering to the installation position in accordance with the dimension drawings, which are part of the complete documentation, and the oil level.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosion and fire hazard</td>
</tr>
<tr>
<td>Exposed heating elements pose a fire hazard.</td>
</tr>
<tr>
<td>Only switch on the heating elements if it is absolutely ensured that they are completely immersed in the oil bath.</td>
</tr>
<tr>
<td>If heating elements are retrofitted, the heat output at the outer surface of the heating element must not exceed the maximum values stated in the table below.</td>
</tr>
</tbody>
</table>

The following table contains information about the specific heat output P_{HO} as a function of ambient temperature:

Table 3-1 Information about the specific heat output

<table>
<thead>
<tr>
<th>P_{HO} in W/cm²</th>
<th>Ambient temperature in °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>10 to 0</td>
</tr>
<tr>
<td>0.8</td>
<td>0 to -25</td>
</tr>
<tr>
<td>0.7</td>
<td>-25 to -50</td>
</tr>
</tbody>
</table>
Control of the heating elements

Heating elements can be controlled by a temperature monitor. The temperature monitor provides a signal to be amplified when the minimum and maximum temperatures are reached.

Further information

You will find further information on the position of the mounted components and a detailed illustrated description of the gear unit in the dimension drawing.

You will find further information on the heating in the separate data sheet, in the list of equipment or in the heating operating instructions, which are part of the complete documentation of the gear unit.

You will find information on the temperature monitor (such as control information) in the temperature monitor operating instructions, which are part of the complete documentation of the gear unit.

3.12 Oil level indicator

The following components for visual monitoring of the oil level can be mounted on the gear unit:

- Oil sight glass
- Oil level indicator
- Dipstick
- Oil overflow hole

Check the oil level when the gear unit is stationary and the oil has cooled down.

NOTICE

Damage to the gear unit caused by poor lubrication

Do not start the drive motor if the oil level is too low.

Further information

You will find further information about the oil level indicator in the operating instructions BA 7300, which are part of the complete documentation of the gear unit.

You will find additional information, a detailed illustration of the gear unit and the position of the mounted components in the dimension drawing, which is part of the complete documentation of the gear unit.
3.13 Oil temperature monitoring system

Depending on the order specification, the gear unit can be fitted with a Pt 100 resistance thermometer for measuring the oil temperature in the oil sump.

To measure temperatures or temperature differences, connect the Pt 100 resistance thermometer to an evaluation unit (to be supplied by the customer). The resistance thermometer has a connection head for the wiring. A two-wire circuit is provided by the manufacturer, but customers can also configure a three or four-wire circuit.

The following diagram shows an oil temperature monitor mounted on the gear unit:

![Diagram of oil temperature monitoring system]

Further information

You will find further information and a detailed illustration of the gear unit and the position of the mounted components in the dimension drawing, which is part of the complete documentation of the gear unit.

You can find additional information about the oil temperature monitoring system, such as control information and technical data, in the oil temperature monitoring system operating instructions and in the list of equipment, which are part of the complete documentation of the gear unit.

3.14 Bearing monitoring

3.14.1 Bearing monitoring using a Pt 100 resistance thermometer

Depending on the order specification, the gear unit can be equipped with Pt 100 resistance thermometers to monitor the bearings.
You must connect the Pt 100 resistance thermometer to an evaluation unit provided by the customer to be able to measure temperatures or temperature differences. The resistance thermometer has a connection head for the wiring. A two-wire circuit is provided by the manufacturer. However, customers can also configure a three or four-wire circuit.

The following diagram shows bearing monitoring using a Pt 100 resistance thermometer:

![Diagram showing bearing monitoring using a Pt 100 resistance thermometer](image_url)

Further information

You will find further information and a detailed illustration of the gear unit and the position of the mounted components in the dimension drawing, which is part of the complete documentation of the gear unit.

You will find further information on bearing monitoring using a Pt 100 resistance thermometer, such as control information and technical data in the Pt 100 resistance thermometer operating instructions and in the list of equipment, which are part of the complete documentation of the gear unit.

3.14.2 Bearing monitoring by shock-pulse transducer

Depending on the order specification, the gear unit can be equipped with measuring nipples for monitoring the bearings.

These measuring nipples are used to attach shock-pulse transducers with quick-release coupling and are mounted on the housing close to the rolling-contact bearings to be monitored.

Further information

You will find further information and a detailed illustration of the gear unit and the position of the mounted components in the dimension drawing, which is part of the complete documentation of the gear unit.
3.14 Bearing monitoring

3.14.3 Bearing monitoring using acceleration sensor

Depending on the contract, the gear unit can be equipped with threaded holes to attach acceleration sensors. These threaded holes can either have an M6, M8 or 1/4”-28UNF-2B thread depending on the particular version.

The following diagram shows the fully assembled acceleration sensor (A), and the threaded connector (B) for variants 1 to 4:

![Diagram of acceleration sensor and connector]

1. Shielded cable (oil-proof)
2. MIL-spec connector
3. Acceleration sensor
4. Sensitivity specification
5. Set screw

Figure 3-9 Fully assembled acceleration sensor (A), and threaded connector (B) for variants 1 to 4

The following diagram shows the fully assembled acceleration sensor (C), and the threaded connector (D) for variants 5A and 5B:
Figure 3-10 Complete acceleration sensor (C), and threaded connector (D) for versions 5A and 5B

The following diagram shows the threaded connector 1/4"-28UNF-2B:

Figure 3-11 Threaded connector 1/4"-28UNF-2B

Further information

You will find further information and a detailed illustration of the gear unit with attached sensors in the dimension drawing, which is part of the complete documentation of the gear unit.

You will find further information on the sensors in the operating instructions for the sensors.

3.15 Speed encoder

Depending on the order specification, an incremental speed encoder can be fitted.

Customers must do the wiring and provide the evaluation unit required.
Further information

You will find further information and a detailed illustration of the gear unit and the position of the mounted components in the dimension drawing, which is part of the complete documentation of the gear unit.

You can find further information about the speed encoder, such as control information and technical data, in the operating instructions for the speed encoder and in the list of equipment, which are part of the complete documentation of the gear unit.

3.16 FLENDER GEARLOG

Depending on the order specification, a FLENDER® GEARLOG can be fitted.

The planetary gear unit is always provided with connection possibilities.

Further information

You will find further information and a detailed illustration of the gear unit and the position of the mounted components in the dimension drawing, which is part of the complete documentation of the gear unit.

You will find further information about FLENDER® GEARLOG, such as control instructions and technical data, in the FLENDER® GEARLOG operating instructions and in the equipment list provided in the complete gear unit documentation.
4.1 Scope of delivery

The scope of delivery is listed in the shipping documents. Immediately upon receiving the gearbox, check that everything has been delivered. Report any damaged and/or missing parts to Customer Services (Page 89) immediately.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious injury through defective product</td>
</tr>
<tr>
<td>Serious injury may occur.</td>
</tr>
<tr>
<td>If the gearbox exhibits any visible damage, you should not put it into operation.</td>
</tr>
</tbody>
</table>

4.2 Transport

General information

The gear unit is delivered fully assembled. Additional items such as shrink disks, couplings, oil coolers, pipework and valves may be delivered separately packaged, as necessary.

When transporting the gear unit, observe the following instructions to avoid damaging the gear unit:

- Transport the gear unit only by suitable means of transport.
- Transport the gear unit without an oil filling and leave the gear unit on the transport packaging.
- Do not use incorrect attachment points. The threads in the front shaft ends must not be used for attaching lifting equipment.
- Do not use the pipes for moving the gear unit.
- Ensure that the lifting equipment is able to bear the weight of the gear unit plus a safety margin.
WARNING

Risk of crushing

There is a risk of being crushed by the transported component if the lifting equipment and load suspension devices used are not suitable and the component becomes detached.

When attaching the load, observe the load distribution information on the packaging.

Transport the product slowly and carefully in the lifted condition to avoid personal injury and damage to the gear unit.

Attaching the load

For transport, only attach the gear unit at the identified attachment points intended for this purpose.

Ensure the following measures are taken when attaching, lifting, lowering and moving the load:

- Keep within the load limits
- If you are using a load suspension device with several load hooks, make sure that the load is evenly distributed between them
- Be aware that the centre of gravity is not in the centre
- Ensure that load suspension devices are correctly secured
- Move the equipment slowly
- Load sway and attachment of the load to objects or parts of buildings is not permissible
- Load hooks must not be loaded at their tip
- Only set down products on a flat, non-slip and strong base

DANGER

Falling load

A danger to life is posed by a falling load due to incorrect attachment.

Do not stand under suspended loads. Keep within the load limits.

Packaging

The gear unit is delivered fully assembled. Additional equipment is also delivered separately packaged, as necessary.

The gear unit may be packed in various forms, depending on the size of the unit and method of transport.

Please pay attention to the symbols applied on the packaging.
4.3 Attachment points

Sling swivels

Gear units have tapped holes to specifically attach sling swivels so that they can be transported during mounting.

- Observe the operating instructions of the sling swivels during transport.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage to the gear unit during transport</td>
</tr>
<tr>
<td>If incorrect attachment points are used, gear units can be damaged when they are transported.</td>
</tr>
</tbody>
</table>
Position of the attachment points

The following diagram shows the position of the attachment points on standard gear units:

P2DP

P3DH
The following table contains information about the connection thread for sling swivels appropriate for the gear unit size:

<table>
<thead>
<tr>
<th>Gear unit size</th>
<th>Connection thread for sling swivels</th>
</tr>
</thead>
<tbody>
<tr>
<td>345</td>
<td>M24</td>
</tr>
<tr>
<td>370</td>
<td>M30</td>
</tr>
<tr>
<td>395</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>M36</td>
</tr>
<tr>
<td>445</td>
<td></td>
</tr>
<tr>
<td>475</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Further information

You will find further information and a detailed illustration of the gear unit, the position of the attachment points, the centre of gravity and data on the weight in the drawings, which are part of the complete documentation of the gear unit.

4.4 Special aspects relating to lubrication

4.4.1 Oil filling and oil drain

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental risk due to leaking oil</td>
</tr>
<tr>
<td>Use an oil-binding agent to immediately clean up any oil that is spilt.</td>
</tr>
<tr>
<td>Please observe the manufacturer’s information on how to handle lubricants.</td>
</tr>
<tr>
<td>Before starting, fill the gear unit with the quantity of oil specified on the rating plate.</td>
</tr>
</tbody>
</table>

The following diagram shows the oil filling locations and oil drain locations for the planetary gear unit:
4.4 Special aspects relating to lubrication

The following diagram shows the oil filling locations and oil drain locations for a gear unit with a backstop:

Figure 4-2 Oil filling locations and oil drain locations

1 Oil sight glass
2 Housing ventilation and bleeding
3 Oil filling point
4 Oil level indicator / dipstick
5 Oil drain
6 Residual oil drain

Figure 4-3 Gear unit with backstop

1 Oil filling point
2 Gear unit
3 Backstop
4 Screw plug for residual oil drain
5 Sealing cover for backstop
Assembly

5.1 General assembly instructions

The mounting work must be performed very carefully by authorised, trained and suitably instructed personnel. Liability will be disclaimed for damage caused by the incorrect performance of this work.

Requirements

Improper use can damage the gear unit. Take the following precautions:

- Protect the gear unit against falling objects and from becoming covered over.
- Do not perform any welding work anywhere on the drive.
- Do not use the gear unit as an earthing point for electric-welding operations.
- On gear units that are operated in conjunction with electrical machines, ensure that no current can flow through the gear unit.
- Use all the fastening points provided in the particular unit design.
- Replace any bolts that can no longer be used with bolts of the same strength class and type.
- Make sure that sufficient lifting equipment is available.

Mounting position and attachment points

Already during the planning phase, ensure that sufficient clearance is left around the gear unit to enable mounting and subsequent care and maintenance work.

The positions of the attachment points are shown in the dimension drawing. To ensure the unit is properly lubricated during operation, please observe the mounting position specified in the dimension drawings.

Further information

You will find further information on dimensions, space requirement and arrangement of the supply connections in the dimension drawings, which are part of the complete documentation of the gear unit.
5.2 Unpacking the gear unit

NOTICE

Heating of the gear unit by external heat sources

The gear unit must not be heated by external heat sources (exposure to direct sunlight, for example) while it is in operation and suitable measures must be taken to protect it.

You can take the following measures to protect the gear unit against this hazard:

- A canopy to protect against the sun
- An additional cooling device

Hotspots can develop if you use a canopy to provide protection against the sun.

If you use a temperature monitoring device, it must be capable of outputting an alarm when the maximum permissible oil sump temperature is reached. It must also be capable of tripping the drive when the maximum permissible oil sump temperature is exceeded. The operator’s process might be interrupted when the drive is shut down.

WARNING

Ignition of vapours emitted from solvents.

There is a risk of injury due to ignition of vapours emitted from solvents during cleaning work.

Please note the following:

- Ensure sufficient ventilation.
- Do not smoke.

5.2 Unpacking the gear unit

Introduction

The scope of delivery is listed in the shipping documents.

WARNING

Risk of serious injury due to defective product

A defective gear unit can result in serious injury.

Do not start the gear unit if it is noticeably damaged.

Contact Customer Service (Page 89).
Requirements

Check that everything has been delivered immediately upon receipt.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage to the gear unit due to corrosion</td>
</tr>
<tr>
<td>Exposing the gear unit to moisture can result in damage from corrosion.</td>
</tr>
<tr>
<td>Do not damage or open the packaging too early if the packaging is used to preserve the unit.</td>
</tr>
</tbody>
</table>

Procedure

To unpack and use the gear unit, please proceed as follows:
1. Remove packaging and transport devices in accordance with regulations.
2. Visually inspect for damage and dirt.
3. Report any damaged or missing parts to Customer Service (Page 89) immediately.
4. Dispose of packaging material and transport devices in accordance with regulations.

5.3 Gear unit assembly

5.3.1 Foundation

Introduction

Depending on the order, the foundation can be a foundation slab or plate, a steel structure or the machine frame.

- In the case of shaft-mounted gear units, the torque arm is mounted on the foundation.
- In the case of gear units with a base, the base is mounted on the foundation.
- In the case of gear units with a mounting flange or block flange, the flange is mounted on the mating flange structure.

Characteristics of the foundation

The foundation must have the following characteristics:

- Stable
- Horizontal
- Flat
The design of the foundation must provide torsional rigidity
- Reaction forces from the gear unit must be braced

Requirements of the foundation

The foundation must meet the following requirements:
- Construct the foundation in such a way that it does not produce any resonance vibrations and that it is isolated against the transmission of vibrations from adjacent foundations.
- Design the foundation according to the relevant weight and torque, taking into account the forces acting on the gear unit.
- Align the foundation carefully with the equipment installed on the input and output sides of the gear unit.
- Take into account any elastic deformation that may be caused by operating forces.
- Install lateral stops to prevent displacement if external forces are acting on the gear unit.

NOTICE

Lack of stable foundation for the gear unit

Damage to the gear unit is possible if it is not mounted on a stable foundation.

Always use bolts with a minimum strength class (property class) of 8.8. For further information and tightening torque specifications, see Chapter Tightening procedure (Page 65). Tighten fastening bolts and nuts with the specified tightening torque. Ensure that the gear unit is not deformed or distorted when tighten the fastening bolts.

5.3.2 Measures prior to mounting

Measures prior to mounting

WARNING

Danger to life due to rotating or moving parts

There is danger that rotating or moving parts may catch hold of you or pull you in.

After the motor has been switched off, the load cannot be securely kept in position. This means the load quickly turn in the opposite direction. Do not change the slipping torque, which has been set to the correct value in the factory.
5.3 Gear unit assembly

5.3.3 Mounting on a mounting flange or block flange

5.3.3.1 Mating flange on the machine side

Measures prior to mounting

Take the following precautions before mounting the mating flange on the machine side:

- Design and construct the mating flange so that no resonant vibration occurs - and no shock and vibration can be transmitted from adjacent foundations.
- The mating flange assembly that is to be mounted on the gear unit must be torsionally stiff.

Improper use can damage the gear unit. Take the following precautions:

- Use a suitable cleaning agent to remove the corrosion protection from the shafts and adjoining mounting surfaces.
- Ensure that the cleaning agent does not come into contact with the shaft sealing rings.
- Remove the plugs and cover flange plates and mount the valves supplied as separate items as shown in the dimension drawings.
- Mount the input and output elements (e.g. coupling components) on the shafts and lock them securely. See chapter Couplings (Page 56).
- Use suitable lifting equipment to place the gear unit in position.

Further information

You will find further information on removing the corrosion protection in the operating instructions BA 7300, which are part of the complete documentation of the gear unit.

You will find further information on attaching gear units to lifting equipment in cases where the weight of the gear unit necessitates the use of lifting equipment in chapter Application planning (Page 39).

If the gear unit is to be transported with mounted parts and components, then it may be necessary to use additional attachment points. You will find the position of these attachment points in the order-specific dimension drawing, which is part of the complete documentation of the gear unit.
Assembly

5.3 Gear unit assembly

- Design the mating flange corresponding to the weight and the torque, taking into account the forces that act on the gear unit itself.
- Very carefully align the units connected at the input - and output - and take into account, where relevant, any elastic deformation as a result of the operational forces.

Poor alignment

The gear unit can be damaged as a result of poor alignment with the mating flange.

The mating flange must be flat and, when tightening the fastening bolts, make sure that the gear unit is free of mechanical stress.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor stability</td>
</tr>
<tr>
<td>Damage to the gear unit is possible if it is not mounted on a stable foundation.</td>
</tr>
<tr>
<td>Tighten the fastening bolts and nuts to the specified tightening torque (Page 65).</td>
</tr>
<tr>
<td>Always use bolts with a strength class (property class) of 8.8.</td>
</tr>
</tbody>
</table>

5.3.3.2 Assembly

Ensure that the following requirements are met before mounting:

- When aligning the machine shaft relative to the mating flange, keep the radial and angular misalignment as small as possible.
- The region around the face of the mounting and mating flange must be absolutely free of any grease. The reliability with which torque is transmitted depends on this to a large extent.
- Do not use any contaminated solvents or dirty cloths - and do not use any cleaning agents containing oil (e.g. petroleum or turpentine) to remove the grease.
- Ensure that the cleaning agent does not come into contact with the shaft sealing rings.
- Degrease the mounting surfaces prior to attachment and cover with Loctite 640 liquid adhesive. The liquid adhesive enhances the friction coefficient of the torque transmitting surfaces, while simultaneously protecting against corrosion.
DANGER

Danger to life from flying fragments

Failure to adhere to the alignment accuracy can result in a broken shaft and, as a consequence, a risk to life and risk of injury.

Align the gear unit exactly so that it conforms to the specified alignment values.

Damage to the gear unit or its components or mounted parts is possible.

The accuracy of the alignment between the shaft axes largely determines the service life of the shafts, rolling-contact bearings and couplings. Please therefore always endeavour to achieve zero deviation in the alignment of the shaft axes (does not apply to ZAPEX couplings).

CAUTION

Risk of chemical burns from chemical substances

There is a risk of chemical burns when handling aggressive cleaning agents.

Please observe the manufacturer’s guidelines on how to handle cleaning agents and solvents. Wear suitable personal protective equipment (gloves, safety goggles). Please use binding agents to immediately clear up any spilt solvent.

Procedure

To mount the gear unit with mounting flange or block flange, proceed as follows:

1. The mounting or block flange on the output side of gear units must be provided with a centring shoulder (Ø d3).
 - Machine a bore (fit H7) that matches this centring shoulder in the mating flange on the machine side.

2. Clean the contact surfaces of the mounting or block flange of the gear unit and the mating flange on the machine side.

3. Insert the gear unit into the mating flange using suitable lifting equipment.

4. Tighten the flange bolts.

NOTICE

Damage to the gear unit due to uneven tightening of the flange bolts.

The gear unit can be damaged if the flange bolts are tightened unevenly.

Tighten the flange bolts crosswise and evenly with the full torque. Ensure that the gear unit is not deformed or distorted when tightening the flange bolts.
Procedure

To mount the gear unit with hollow output shaft, proceed as follows:

1. The mounting or block flange on the output side of gear units must be provided with a centring shoulder (∅ d₃). For a machine shaft with only bearings on one side, machine a bore (fit H7) that matches this centring shoulder in the mating flange on the machine side. The gear unit performs the function of the 2nd bearing location.

2. Clean the contact surfaces of the mounting or block flange of the gear unit and the mating flange on the machine side.

3. Use a suitable cleaning agent to remove the corrosion protection from out of the hollow shaft and machine shaft.

4. Inspect the hollow and machine shafts for damaged seats and edges. If necessary, post work the parts using a suitable tool and then clean these parts again.

5. Apply a suitable lubricant to the contact surfaces to prevent fretting corrosion (micro corrosion).

6. Using a suitable crane or lifting gear, pull on the gear unit using nuts and threaded spindle. Place the gear unit down on the mating flange on the machine side.

NOTICE

Damage to the gear unit due to centring the gear unit in the mating flange

The gear unit can be damaged by centring the gear unit (centring shoulder ∅ d₃) in the mating flange.

Note that, for a machine shaft located in two bearings in the mating flange on the machine side, centring the gear unit (centring shoulder ∅ d₃) in the mating flange is not permissible (because of overdetermination).

Further information

You will find information on the permissible tolerances in the relevant operating instructions, which are part of the complete documentation of the gear unit.

5.3.4 Mounting the torque arm and the gear unit base

Introduction

If it has not already been mounted, mount the mounted component of the torque arm on to the gear unit as specified in the order.
Degrease the mounting surfaces prior to attachment and cover with Loctite 640 liquid adhesive. The liquid adhesive enhances the friction coefficient of the torque transmitting surfaces, while simultaneously protecting against corrosion.

NOTICE

Damage to the gear unit due to incorrect attachment of the torque arm

Damage to the gear unit is possible due to incorrect attachment of the torque arm.

Torque arms must only be mounted in consultation with Flender. Mount the torque arm on the side of the machine without causing any distortion. Use the maximum possible number of bolts for mounting.

5.3.4.1 One-sided torque arm

If the gear unit is equipped with a one-sided torque arm, use a ball-and-socket joint or a flexible bushing.

The following diagram shows one-sided torque arm:

![One-sided torque arm diagram](image)

<table>
<thead>
<tr>
<th>1</th>
<th>Axle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ball-and-socket joint</td>
</tr>
<tr>
<td>3</td>
<td>Lever</td>
</tr>
<tr>
<td>4</td>
<td>Ball-and-socket joint</td>
</tr>
<tr>
<td>5</td>
<td>Connection at the gear unit</td>
</tr>
<tr>
<td>6</td>
<td>One-sided torque arm</td>
</tr>
</tbody>
</table>

Figure 5-1 One-sided torque arm

Further information

You will find further information and a detailed illustrated description in the dimension drawing, which is part of the complete documentation of the gear unit.

5.3.4.2 Double-sided torque arm

If the gear unit is equipped with a double-sided torque arm, the torque is supported via rods and articulations connected to a torsion shaft.

This design means that the machine bearings are free of all transverse forces apart from the weight.
The diagram below shows a double-sided torque arm:

1. Double-sided torque arm
2. Rod
3. Connection at the gear unit
4. Torsion shaft
5. Articulation element
6. Bearing support

Figure 5-2 Double-sided torque arm

The bearing supports can be mounted both on the vertical wall (as depicted) or on a horizontal foundation.

Further information

You will find further information and a detailed illustrated description in the dimension drawing, which is part of the complete documentation of the gear unit.

5.3.4.3 Gear unit base

If the gear unit is fitting with a base, the torque will be supported by the base surface.

The following diagram shows a gear unit base:
5.3 Gear unit assembly

NOTICE
Damage to the gear unit as it is not mounted on a stable foundation
The fine-grout concrete must be allowed to harden for at least 28 days before tensioning the anchor bolts.

Further information
You will find further information and a detailed illustrated description in the dimension drawing, which is part of the complete documentation of the gear unit.
5.4 Couplings

Introduction

Improper use can damage the gear unit. Take the following precautions:

- If necessary, perform the following preparatory work in accordance with the operating instructions for the coupling:
 - Machine the finished hole
 - Mill the parallel keyway
 - Fit the axial locking element
 - Balance
- Align the individual components precisely with one another.
- Refer to the operating instructions for the coupling for instructions on how to install, maintain and operate the coupling.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger of injury due to coupling rupture</td>
</tr>
<tr>
<td>Flying fragments can cause fatal injury.</td>
</tr>
<tr>
<td>Observe the operating instructions for the couplings.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious or irreparable damage to the gear unit and coupling caused by inaccurate or incorrect alignment</td>
</tr>
<tr>
<td>Failure to accurately or correctly align the gear unit and coupling may result in serious or irreparable damage to both components.</td>
</tr>
<tr>
<td>Align the individual components precisely with one another when installing the drives. Make sure that the maximum permissible misalignment values are not exceeded during operation.</td>
</tr>
</tbody>
</table>

Further information

You will find further information on the coupling in the operating instructions for the coupling, which are part of the complete documentation of the gear unit.

5.4.1 Mounting the coupling

Introduction

The method used to mount the coupling varies according to type. The procedure described in these operating instructions is general rather than specific to one type of coupling.
Mount the coupling as described in the operating instructions for the specific coupling. Improper use can damage the gear unit. Take the following precautions:

- Do not use force (hammer blows, etc.) to fit the coupling parts as this can cause internal damage to the gear unit.
- Take care not to damage the shaft sealing rings or shaft running surfaces when fitting the coupling parts.

Procedure

To fit the coupling, proceed as follows:

1. Carefully clean the shaft ends and the coupling parts.
2. Use a suitable fixture to mount the coupling parts on the shaft ends.
3. Lock the coupling parts to prevent axial displacement.
4. Move the machines to be coupled close to one another and then align them.
5. Join the coupling parts together.

Heating coupling parts prior to mounting

Depending on the order specification, it may be necessary to heat the coupling parts before mounting them.

⚠️ WARNING

Risk of burns
Possible risk of serious burn injury from hot surfaces (> 55 °C).
Wear suitable protective gloves and protective clothing.

Improper use can damage the gear unit. Take the following precautions:

- The required joining temperatures can be found in the dimension drawings in the operating instructions for the coupling.
- Unless otherwise instructed, heat the coupling parts by an induction heater, with a torch or in an oven.
- Use heat shields designed to protect against radiant heat in order to safeguard the shaft sealing rings against damage or heating to above 100 °C.
- Quickly fit the coupling parts on the shafts. The mounting dimensions can be found in the dimension drawings in the operating instructions for the coupling.
CAUTION

Mechanical danger
Risk of severe injuries.
Wear suitable protective gloves and protective clothing.

Gear units with hollow output shaft or flanged output shaft

There is no need to install the output-side coupling for gear units with a hollow output shaft or flanged output shaft.

Mount gear units with hollow output shaft onto the shafts of the customer's driven machine. Use a mating flange to mount gear units with flanged output shaft onto the shaft of the customer's driven machine.

Further information

You will find further information on the coupling in the operating instructions for the coupling, which are part of the complete documentation of the gear unit.

5.4.2 Aligning the coupling

Introduction

The coupling parts might become misaligned as a result of:

- Failure to accurately align the parts during assembly
- During operation of the system:
 - Due to thermal expansion
 - Due to shaft deflection
 - Due to machine frames that are too soft
Improper use can damage the gear unit or the coupling. Take the following precautions:

- Make sure that the maximum permissible misalignment values are not exceeded during operation.
 - If you are using couplings supplied by Flender, you will find the maximum permissible misalignment values in the operating instructions for the coupling.
 - If you are using couplings supplied by other manufacturers, contact them and ask them for the maximum permissible misalignment values, making sure that you specify the potential radial loads for your application. Keep the operating instructions for the coupling together with these operating instructions.

- Angular and radial misalignment might occur simultaneously. Make sure that the total value of both misalignments does not exceed the maximum permissible angular or radial misalignment value.

The diagram below illustrates the potential misalignments:

![Diagram of misalignments](image)

Figure 5-4 Possible misalignments

Aligning

Align the individual components in two mutually perpendicular axial planes. The following can be used as alignment tools:

- Ruler (radial misalignment)
- Feeler gauge (angular misalignment)
- Spirit level
- Dial gauge
- Laser alignment system

You will achieve a greater degree of alignment accuracy by using a dial gauge or laser alignment system.

The diagram below shows the alignment process based on the example of a flexible coupling:
Assembly

5.5 Connecting components

![Diagram](image)

1. Ruler
2. Feeler gauge
3. Measuring points

Figure 5-5 Alignment process based on the example of a flexible coupling

Note

It is advisable to insert shims or metal sheets under the mounting feet to align the drive components in the vertical direction. It is helpful to use support paws with adjusting screws on the foundation to adjust the drive components laterally.

Gear unit with motor bell housing

If the gear unit and the motor are connected through a motor bell housing, no alignment of the couplings is necessary.

Further information

You will find further information on the permissible alignment errors in the operating instructions for the coupling, which are part of the complete documentation of the gear unit, or contact the manufacturer in question.

5.5 Connecting components

5.5.1 Gear units with mounted components

Depending on the order specification, the gear unit can be equipped with various components. Connect the closed-loop control and open-loop control electrical devices corresponding to the specifications of the device supplier.

Further information

You will find further information on operation and maintenance in the operating instructions supplied, which are part of the complete documentation of the gear unit.

You will find the technical data of the mounted components in the order-specific list of equipment, which is part of the complete documentation of the gear unit.
5.5.2 Connecting the air-oil cooler

Procedure

To connect the air-oil cooler to the gear unit, proceed as follows:

1. Electrically connect the contamination indicator of the double change-over filter and the pressure monitor.
2. Electrically connect the fan motor.

Further information

You will find further information on the air-oil cooler in the operating instructions for the air-oil cooler, which are part of the complete documentation of the gear unit.

Note

Observe the information provided in chapter of the Mounted oil supply system with air-oil cooler (Page 28).

5.5.3 Connecting the water-oil cooler

NOTICE

Damage to the water-oil cooler

When the pipes are installed, it is not permissible for the connections of the water-oil cooler to be subjected to forces, torques or vibration.

Procedure

To connect the water-oil cooler to the gear unit, proceed as follows:

1. Remove the connecting bushes from the cooling water connection before connecting the water-oil cooler.
2. Flush the water-oil cooler to remove any dirt and pollution.
3. Connect up the cooling water inlet and drain lines. Refer to the dimension drawing for the direction of flow and the position of the connections.
4. Electrically connect the pressure monitor (only for appropriately equipped gear units).
Further information
You will find additional information on the water-oil cooler in the operating instructions for the water-oil cooler unit, which are part of the complete documentation of the gear unit.

Note
Observe the information provided in chapter Mounted oil supply system with water-oil cooler.

5.5.4 Connecting the separate oil supply system

Procedure
To connect the separate oil supply system to the gear unit, proceed as follows:
1. Remove the sealing pipe sleeves from the suction and pressure lines.
2. Mount the system on the gear unit as shown in the dimension drawings, which are part of the complete documentation, or install it as a separate system.
3. Avoid distorting the pipes during installation.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage to the gear unit due to corrosion</td>
</tr>
<tr>
<td>Immediately mount or preserve adapted and pickled pipes.</td>
</tr>
</tbody>
</table>

Further information
You will find further information on the oil supply system in the operating instructions of the oil supply system, which are part of the complete documentation of the gear unit.

5.5.5 Connecting the pressure monitor

For gear units with mounted oil supply system or separate oil supply system, you must connect the pressure monitor so that it functions correctly.

Further information
You will find further information on pressure monitoring in the operating instructions for the pressure monitor, which are part of the complete documentation of the gear unit.
5.5.6 Connecting the heating element

Procedure
To connect heating elements to the gear unit, proceed as follows:
1. Check that the heating element connection is not damaged.
2. Install the electrical wiring for the heating elements.

Further information
You will find further information on the heating in the operating instructions for the heating, which are part of the complete documentation of the gear unit.

5.5.7 Connecting the Pt 100 resistance thermometer

Procedure
To connect the Pt 100 resistance thermometer to the gear unit, proceed as follows:
1. Check that the Pt 100 resistance thermometer connection is not damaged.
2. Install the electrical wiring between the Pt 100 resistance thermometer and the evaluation unit. The customer is responsible for providing the evaluation unit.

Further information
You will find further information on the Pt 100 resistance thermometer in the Pt 100 resistance thermometer operating instructions, which are part of the complete documentation of the gear unit.

5.5.8 Connecting the bearing monitoring

Procedure
To connect the bearing monitoring system to the gear unit, proceed as follows:
1. Check that the connection of the bearing monitoring system is not damaged.
2. Install the electrical wiring for the bearing monitoring system.

Further information
You will find further information on the bearing monitoring system in the operating instructions for the bearing monitoring system, which are part of the complete documentation of the gear unit.
5.5.9 Connecting a speed encoder

Procedure

To connect the air-oil cooler to the gear unit, proceed as follows:

1. Ensure that the speed encoder connection is not damaged.
2. Electrically connect the speed encoder.

Further information

You will find further information on the speed encoder in the operating instructions for the speed encoder, which are part of the complete documentation of the gear unit.

5.5.10 Electrical connections

Requirements

Do not use any motor that exceeds the specified speed of the gear unit, otherwise the gear unit may become damaged. Speeds are displayed on the rating plate.

Improper use can damage the gear unit. Take the following precautions:

- Before connecting the motor, determine the phase sequence of the three-phase power system using a phase-sequence indicator.
- Connect the motor corresponding to the predefined direction of rotation.

Procedure

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric shock</td>
</tr>
<tr>
<td>Energised parts can cause an electric shock.</td>
</tr>
<tr>
<td>Ensure that the entire plant is de-energised before starting electrical installation work.</td>
</tr>
<tr>
<td>Carefully observe the five safety rules (Page 11).</td>
</tr>
</tbody>
</table>

To connect the motors, monitoring devices and electrical components, proceed as follows:

1. Ensure that the connections of the motors, monitoring devices and electrical components are not damaged.
2. Wire the motors, monitoring devices and electrical components as shown in the terminal diagram.
Further information
You will find further information about the electrical connections in the terminal diagrams and lists of equipment, which are part of the complete documentation of the gear unit.
You will find further information on mounting the motor in the operating instructions of the motor.

5.5.11 Mounting connecting hoses

Procedure
To mount the connecting hoses, proceed as follows:
1. Clean the connecting hoses carefully.
2. Remove the screw plugs and blind flanges.
3. Screw on the connecting hoses as shown in the dimension drawings.

5.6 Tightening procedure

5.6.1 Introduction

Bolts
The bolts must have the following properties:
- Made of steel
- Black-annealed or phosphatised
- Lightly oiled (do not add additional oil)

Note
Replacing bolts
Replace any bolts that are no longer fit for use by bolts of the same type and strength class.

Mating threads
The mating threads must have the following properties:
- Made of steel or cast iron
- Dry, cut threads
5.6 Tightening procedure

Note
Using a lubricant
Lubricants must never be used because it can result in the bolted connection becoming overloaded.

5.6.2 Bolt connection classes

For screwing fastening bolts, note the information in the following table:

Table 5-1 Information on screwing fastening bolts

<table>
<thead>
<tr>
<th>Bolt connection class</th>
<th>Range of the torque exerted by the tool</th>
<th>Tightening procedure</th>
</tr>
</thead>
</table>
| C | ± 5 % | ● Hydraulic tightening with mechanical screwdriver
|| | | ● Torque-controlled tightening with a torque spanner or a signal-emitting torque spanner
|| | | ● Tightening with a precision mechanical screwdriver with dynamic torque measurement |
| D | ± 10 % to ± 20 % | ● Torque-controlled tightening with mechanical screwdriver |
| E | ± 20 % to ± 50 % | ● Tightening with an impact wrench or impact driver, without adjustment checking device
|| | | ● Tightening by hand, using a spanner without torque measuring device |

Foundation bolts, hub bolts, bearing-cover bolts and torque arm bolts must always be tightened in accordance with bolt connection class "C".

Further information
You will find further information on tightening torques for mounting the motor and brake in the operating instructions from the manufacturer in question.

5.6.3 Tightening torques and preload forces

The tightening torques specified in the following table apply only to these operating instructions for the gear unit.

Bolt the specified bolted connections with the tightening torques as stated in the following table.

The tightening torques apply to friction values of $\mu_{\text{total}} = 0.14$.
The following table lists the preload forces and tightening torques for bolt connections, strength classes 8.8; 10.9; 12.9:

Table 5-2 Preload forces and tightening torques

<table>
<thead>
<tr>
<th>Nominal thread diameter</th>
<th>Strength class of the bolt</th>
<th>Preload force for bolt connection classes from table in chapter Bolt connection classes</th>
<th>Tightening torque for bolt connection classes from table in chapter Bolt connection classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>d mm</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>F_{Mmin}</td>
<td>M_n N</td>
<td></td>
</tr>
<tr>
<td>M10</td>
<td>8.8</td>
<td>18 000</td>
<td>11 500</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>26 400</td>
<td>16 900</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>30 900</td>
<td>19 800</td>
</tr>
<tr>
<td>M12</td>
<td>8.8</td>
<td>26 300</td>
<td>16 800</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>38 600</td>
<td>24 700</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>45 100</td>
<td>29 800</td>
</tr>
<tr>
<td>M16</td>
<td>8.8</td>
<td>49 300</td>
<td>31 600</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>72 500</td>
<td>46 400</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>85 000</td>
<td>54 400</td>
</tr>
<tr>
<td>M20</td>
<td>8.8</td>
<td>77 000</td>
<td>49 200</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>110 000</td>
<td>70 400</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>129 000</td>
<td>82 400</td>
</tr>
<tr>
<td>M24</td>
<td>8.8</td>
<td>109 000</td>
<td>69 600</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>155 000</td>
<td>99 200</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>181 000</td>
<td>116 000</td>
</tr>
<tr>
<td>M30</td>
<td>8.8</td>
<td>170 000</td>
<td>109 000</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>243 000</td>
<td>155 000</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>284 000</td>
<td>182 000</td>
</tr>
<tr>
<td>M36</td>
<td>8.8</td>
<td>246 000</td>
<td>157 000</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>350 000</td>
<td>224 000</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>409 000</td>
<td>262 000</td>
</tr>
<tr>
<td>M42</td>
<td>8.8</td>
<td>331 000</td>
<td>212 000</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>471 000</td>
<td>301 000</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>551 000</td>
<td>352 000</td>
</tr>
<tr>
<td>M48</td>
<td>8.8</td>
<td>421 000</td>
<td>269 000</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>599 000</td>
<td>383 000</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>700 000</td>
<td>448 000</td>
</tr>
<tr>
<td>M56</td>
<td>8.8</td>
<td>568 000</td>
<td>363 000</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>806 000</td>
<td>516 000</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>944 000</td>
<td>604 000</td>
</tr>
<tr>
<td>M64</td>
<td>8.8</td>
<td>744 000</td>
<td>476 000</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>1 060 000</td>
<td>676 000</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>1 240 000</td>
<td>792 000</td>
</tr>
</tbody>
</table>
5.6.4 Tightening torques for flange connection and version with a base

The following diagram shows the flange connection (A) and version with base (B):

![Diagram of flange connection and version with base]

For flange connections, use bolts of strength class 10.9 and for the version with base bolts with strength class 8.8. You must always tighten these according to bolt connection class "C". The bolt connection class "C" is described in the table in chapter Bolt connection classes.

Bolt the specified bolted connections with the tightening torques as stated in the following table.

<table>
<thead>
<tr>
<th>Nominal thread diameter</th>
<th>Strength class of the bolt</th>
<th>Preload force for bolt connection classes from table in chapter Bolt connection classes</th>
<th>Tightening torque for bolt connection classes from table in chapter Bolt connection classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>d mm</td>
<td>C D E</td>
<td>C D E</td>
<td>C D E</td>
</tr>
<tr>
<td></td>
<td>F_{M\text{,min.}} N</td>
<td>M_A Nm</td>
<td></td>
</tr>
<tr>
<td>M72x6</td>
<td>8.8</td>
<td>944 000 604 000 378 000</td>
<td>15 500 13 400 11 900</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>1 340 000 856 000 535 000</td>
<td>22 000 18 900 16 900</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>1 570 000 1 000 000 628 000</td>
<td>25 800 22 200 19 800</td>
</tr>
<tr>
<td>M80x6</td>
<td>8.8</td>
<td>1 190 000 760 000 475 000</td>
<td>21 500 18 500 16 500</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>1 690 000 1 100 000 675 000</td>
<td>30 500 26 400 23 400</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>1 980 000 1 360 000 790 000</td>
<td>35 700 31 400 27 400</td>
</tr>
<tr>
<td>M90x6</td>
<td>8.8</td>
<td>1 510 000 968 000 605 000</td>
<td>30 600 26 300 23 500</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>2 150 000 1 380 000 860 000</td>
<td>43 500 37 500 33 400</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>2 520 000 1 600 000 1 010 000</td>
<td>51 000 43 800 39 200</td>
</tr>
<tr>
<td>M100x6</td>
<td>8.8</td>
<td>1 880 000 1 200 000 750 000</td>
<td>42 100 36 200 32 300</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>2 670 000 1 710 000 1 070 000</td>
<td>60 000 51 600 46 100</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>3 130 000 2 000 000 1 250 000</td>
<td>70 000 60 400 53 900</td>
</tr>
</tbody>
</table>

Figure 5-6 Flange connection and version with base
The tightening torques apply to friction values of $\mu_{\text{total}} = 0.14$.

The table below contains the tightening torques for bolted connections for the flange connection and base:

Table 5-3 Tightening torques

<table>
<thead>
<tr>
<th>Gear unit size</th>
<th>Flange connection (strength class 10.9)</th>
<th>Version with base$^{1)}$ (strength class 8.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal thread diameter</td>
<td>Tightening torque$^{2)}$ for bolt connection class "C" from the table in chapter</td>
</tr>
<tr>
<td></td>
<td>d mm</td>
<td>M_A Nm</td>
</tr>
<tr>
<td>345</td>
<td>M36</td>
<td>2 960</td>
</tr>
<tr>
<td>370</td>
<td>M36</td>
<td>2 960</td>
</tr>
<tr>
<td>395</td>
<td>M42</td>
<td>4 640</td>
</tr>
<tr>
<td>420</td>
<td>M42</td>
<td>4 640</td>
</tr>
<tr>
<td>445</td>
<td>M48</td>
<td>6 760</td>
</tr>
<tr>
<td>475</td>
<td>M56</td>
<td>10 500</td>
</tr>
<tr>
<td>500</td>
<td>M56</td>
<td>10 500</td>
</tr>
</tbody>
</table>

$^{1)}$ Check the bolts as appropriate for the foundation construction.

$^{2)}$ The tightening torques apply to friction values for $\mu_{\text{total}} = 0.14$ in the thread and 90% utilisation of the yield point.

Further information

Replace any bolts that can no longer be used by new bolts of the same strength class and type.

5.7 Final work

Measures

Once all the components have been assembled or connected, perform the following final work:

- Check whether all devices dismantled for transportation have been reassembled.
- Check all bolted connections for tightness after installation of the gear unit has been completed.
- Check the alignment after tightening the fastening elements. The alignment must not have changed in any way.
- Lock the oil drainage valves against accidental opening.
- Protect the gear unit against falling objects.
5.7 Final work

- Check that the guards over rotating parts are securely fastened. Contact (accidental or deliberate) with rotating parts is not permitted.
- Ensure equipotential bonding in accordance with the applicable regulations and guidelines. If no threaded holes are available on the gear unit for an earth connection, please take suitable alternative measures. This work must always be done by specialist electricians.
- Protect the cable entries against penetrating moisture.

Further information

You will find further information about the gear unit and all assembled elements in the operating instructions for assembled elements, which are part of the complete documentation of the gear unit.

You will find further technical specifications in the separate data sheet, which is part of the complete documentation of the gear unit.
Commissioning

6.1 Measures prior to commissioning

Take the following measures before commissioning the gear unit:

- Read and observe the operating instructions.
- Replace the screw plug with the air filter or the wet-air filter. Read operating instructions BA 7300 for further information.
- Gear units with backstop: Observe the appropriate measures prior to commissioning gear units equipped with backstop.
- Fill the gear unit with oil.
- Gear unit with oil supply system: Take the appropriate measures before commissioning gear units with an oil supply system.
- Gear unit with oil supply system: Check that the oil supply system is working properly.
- Check the oil level.
- Check the gear unit for leaks.
- Ensure that all pipes and components are filled with oil.

Further information

You will find further information on oil and changing the air filter in the operating instructions BA 7300, which are part of the complete documentation of the gear unit.

You will find further information on individual components in the operating instructions for those components, which are part of the complete documentation of the gear unit.

6.1.1 Gear unit with backstop

Take the following measures before commissioning the gear unit with backstop:

- Fill the backstop with oil (Page 79).
- Check that the backstop can be easily rotated in the free-wheeling direction without a need to exert excessive force. When doing this, observe the direction of rotation arrows at the gear unit.
- Before connecting the motor, identify the phase sequence of the three-phase mains power supply. Connect the motor corresponding to the defined direction of rotation.
NOTICE

The backstop and the gear unit can be damaged

If you run the gear unit against the blocking direction of the backstop, the backstop and the gear unit can be damaged.

Do not operate the gear unit against the blocking direction of the backstop. Observe the information plate on the gear unit.

6.1.2 Gear unit with oil supply system

Take the following measures before commissioning a gear unit with an oil supply system:

- Make sure that the pressure in the oil supply system components does not exceed the maximum permissible pressure.
- Ensure that the maximum permissible temperature of the oil supply system components is not exceeded.
- Using the oil supply system, lubricate the gear unit for 2 minutes using a pre-lubrication phase. During this time, the rolling-contact bearings and gearing are supplied with sufficient oil for starting.

Further information

You will find further information on the oil supply system in the separate data sheet and in the list of equipment, which are part of the complete documentation of the gear unit.

6.2 Measures during commissioning

Take the following measures when commissioning the gear unit and document them:

- Check the oil level.
- Check the tightness of the shaft seal on the gear unit (Page 21).
- Check that the rotating parts can rotate without contact.
- Check that the connecting pipes are firmly seated and tight.

Further information

You will find further information on oil in the operating instructions BA 7300, which are part of the complete documentation of the gear unit.
6.2.1 Gear unit with backstop

Damage due to overheating

The backstop can be damaged or destroyed by overheating.

Check the dimension "x_{min.}" regularly every 12 months. The dimension must not fall below the limit value "x_{min.}" stated on the backstop rating plate.

6.2.2 Temperature measurement

Measure the oil sump temperature during the first commissioning and after maintenance work after run-in during use as intended (maximum driven machine power).

NOTICE

Damage to the gear unit due to insufficient lubrication

Damage to the gear unit due to insufficient lubrication is possible because of excessive temperatures.

The maximum permissible oil sump temperature is:

- 90° C (applicable for mineral oil API groups I or II and saturated synthetic ester)
- 100° C (applicable for mineral oil API group III, PAO and PG oils)

At higher temperatures, the gear unit must be shut down immediately and Flender Customer Service must be consulted.

6.2.3 Bearing monitoring (vibration measurement)

If provisions have been made for vibration measurement for bearing monitoring (Page 34), vibration measurements must be performed to obtain initial values and/or reference values for diagnosis during first commissioning. These measurements must be recorded and archived.

Note

Retaining the record

Keep the record together with these operating instructions.

6.2.4 Gear units with heating

Please observe the following measures to commission the gear unit with heating:

- Ensure that the heating elements are not exposed.
- Check the switching points of the temperature monitor.
WARNING

The oil sump can catch fire

The oil sump can catch fire if exposed heating elements are switched on. Never switch on the heating elements until you have checked that they are completely immersed in the oil bath.

Further information

You will find further information about the heating elements in the operating instructions for the heating elements, which are part of the complete documentation of the gear unit.
7.1 Operating data

Introduction

To ensure correct, trouble-free operation of the system, observe the operating data of the gear unit. The operating data specified in the Technical data in the Appendix apply.

The following operating data apply to the oil:

Table 7-1 Operating data

<table>
<thead>
<tr>
<th>Maximum operating temperature</th>
<th>80 °C</th>
<th>is applicable for mineral oil, API groups I or II and saturated synthetic ester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90 °C</td>
<td>is applicable for semi-synthetic oils, API group III, PAO and PG oils</td>
</tr>
<tr>
<td>Maximum operating temperature (for brief periods)</td>
<td>90 °C</td>
<td>is applicable for mineral oil, API groups I or II and saturated synthetic ester</td>
</tr>
<tr>
<td></td>
<td>100 °C</td>
<td>is applicable for semi-synthetic oils, API group III, PAO and PG oils</td>
</tr>
<tr>
<td>Oil pressure of the oil supply system</td>
<td>> 0.5 bar</td>
<td></td>
</tr>
<tr>
<td>Water pressure of the water-oil cooler</td>
<td>< 8.0 bar</td>
<td></td>
</tr>
</tbody>
</table>

Further information

You will find further information about the technical data of the gear unit in the separate data sheet and the list of equipment, which are part of the complete documentation of the gear unit.

7.2 Anomalies

Introduction

Switch off the drive unit immediately if it exhibits anomalous behaviour during operation.

A few anomalies are listed below as examples:

- Oil temperature exceeds the maximum permissible value
- Alarm tripped by the pressure monitor in the oil cooling system
- Unusual operating noise
NOTICE

Faults can cause damage to the gear unit
The gear unit might sustain damage if it is not shut down when a fault occurs.
Switch off the drive unit immediately if any fault condition develops.

Rectifying anomalies

Proceed as follows to rectify any anomalies:

1. Switch off the drive unit if it exhibits anomalous behaviour during operation.
2. Refer to the fault information (Page 83) to find the cause of the fault.
3. If you still cannot determine the fault cause, contact Flender Customer Services (Page 89).

7.3 Taking the unit out of service

If you take the unit out of service for a prolonged period, you must take the following measures depending on the length of time that the gear unit will remain out of service:

- **Switch off the drive unit.**
- **On gear units with a water-oil cooler:**
 - Drain the water from the cooling coil or the water-oil cooler if there is a risk of frost.
 - Close the shutoff valves in the cooling water intake and discharge lines.
- **For gear units with an oil supply system, perform the following steps before you preserve the gear unit:**
 - Detach the connection between the oil supply system and the gear unit.
 - Seal the openings in the gear unit and oil supply system so that they are air-tight.
- **Take measures to preserve the gear unit if it is to be out of service for a prolonged period.** Follow the procedure described in operating instructions BA 7300.
8.1 Maintenance schedule

Maintenance and servicing activities

The following table provides an overview of all maintenance and servicing activities which you are required to perform continuously or at regular intervals.

<table>
<thead>
<tr>
<th>Intervals and time limits</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>As required</td>
<td>Clean the air filter</td>
</tr>
<tr>
<td></td>
<td>Clean the fan and gear unit</td>
</tr>
<tr>
<td></td>
<td>Check the condition of the water-oil cooler</td>
</tr>
<tr>
<td>Plate on the gear unit, gear unit dimension drawing</td>
<td>Replace the backstop</td>
</tr>
<tr>
<td>Daily</td>
<td>Check the oil temperature</td>
</tr>
<tr>
<td></td>
<td>Check the oil pressure (if pressure lubrication is fitted)</td>
</tr>
<tr>
<td></td>
<td>Check for changes in the gear unit noise</td>
</tr>
<tr>
<td>Monthly and prior to every start-up</td>
<td>Check for leaks</td>
</tr>
<tr>
<td></td>
<td>Check the oil level</td>
</tr>
<tr>
<td>400 operating hours after commissioning</td>
<td>Check the water content of the oil</td>
</tr>
<tr>
<td></td>
<td>Change the oil (or depending on results of the oil sample test)</td>
</tr>
<tr>
<td></td>
<td>Check that the fastening bolts are tight</td>
</tr>
<tr>
<td>Every 3 months</td>
<td>Check the speed monitoring of the auxiliary drive</td>
</tr>
<tr>
<td></td>
<td>Check the auxiliary drive</td>
</tr>
<tr>
<td></td>
<td>Clean the oil filter</td>
</tr>
<tr>
<td></td>
<td>Air filter, venting screw or venting valve</td>
</tr>
<tr>
<td>Every 3 000 operating hours</td>
<td>Measure the vibration levels of the rolling-contact bearings</td>
</tr>
<tr>
<td>Every 3 000 operating hours, at least every 6 months</td>
<td>Regrease taconite seals</td>
</tr>
</tbody>
</table>
Servicing

8.2 Service and maintenance work

<table>
<thead>
<tr>
<th>Intervals and time limits</th>
<th>Measures</th>
</tr>
</thead>
</table>
| Every 12 months | Check the friction linings of the torque-limiting backstop
 | Inspect the hose lines
 | Inspect the shrink disk
 | Check the water content of the oil |
| Every 5 000 operating hours, at least every 18 months | Change the oil (or depending on results of the oil sample test)
 | Check the condition of the air-oil cooler (the same time as you change the oil)
 | Check the condition of the water-oil cooler (the same time as you change the oil) |
| Every 2 years | Perform a general inspection on the gear unit (the same time as you change the oil)
 | Check that the fastening bolts are tight
 | Clean the fan and gear unit |
| Every 3 years | Check the corrosion protection of the open shaft ends |
| 6 years after the stated date of manufacture | Change the hoses |

Further information

You will find further information on additional maintenance and servicing activities in the separate data sheet and in the operating instructions BA 7300.

You will find further information on the installed components in the operating instructions for the components, which are part of the complete documentation of the gear unit.

8.2 Service and maintenance work

8.2.1 Checking the oil temperature

Damage to the gear unit due to excessively high oil sump temperatures.

The gear unit can sustain damage due to inadequate lubrication if you allow it to operate at oil sump temperatures above the maximum permissible temperature.

Do not operate the gear unit above the maximum permissible oil sump temperature.

Procedure

Proceed as follows to check the oil temperature:

1. Allow the gear unit to become warm.
2. Operate the gear unit with the maximum driven machine power.
3. Measure the temperature of the oil in the oil sump.
4. Compare the measured value with the maximum permissible oil temperature (Page 75).

5. Immediately stop the gear unit if the maximum permissible oil temperature is exceeded. Contact Flender Customer Services.

8.2.2 Replacing the backstop

Introduction

If you run the gear unit at speeds below the disengagement speed of the backstop, you must regularly replace the backstop.

The replacement intervals are provided in the dimension drawing and on a plate attached to the gear unit. This plate is attached to the gear unit housing close to the backstop.

Procedure

Proceed as follows to replace the backstop:

1. Replace the backstop.
2. Fill the new backstop with oil (Page 79).

8.2.3 Filling the backstop with oil

Oil grade and filling filter

When filling the backstop with oil, observe the following points:

- Use the same oil grade and oil viscosity as for the gear unit itself.
- Use a filling filter with the same filter mesh size as for the gear unit itself.

Procedure

Proceed as follows to fill the backstop with oil:

1. Open the oil filling screw of the backstop.
2. Fill the amount of oil that is specified on the backstop plate.
3. Screw in the oil filling screw.
8.2.4 Checking the friction linings of the torque-limiting backstop

Introduction

The friction linings of the torque-limiting backstop can wear, especially for frequent slippage.

Note

Loss of warranty

The warranty becomes null and void if you remove or damage the locking wire on the guide screws of the springs.

Do not change the slipping torque setting. The slipping torque was set to the correct value in the factory.

The following diagram shows the torque-limiting backstop:

![Torque limiting backstop diagram]

1. Outer ring
2. Guide screw with compression spring
3. Locking wire
4. Shaft (intermediate flange)
5. Inner ring
6. Cage with sprags
7. Friction lining

Figure 8-1 Torque limiting backstop

Procedure

Proceed as follows to check the friction linings of the torque-limiting backstop:

1. Clean the measurement location at the backstop.
2. Measure dimension "x".
3. If dimension "x" falls below limit value \(x_{\text{min}} \) stamped on the backstop rating plate, you must replace the torque-limiting backstop.
 It is not permissible that the gear unit continues to operate.
Further information

You will find further information on the torque-limiting backstop in the operating instructions for the torque-limiting backstop, which are part of the complete documentation of the gear unit.

8.2.5 Measuring the vibration levels of the rolling-contact bearings

Procedure

Proceed as follows to measure the vibration levels of the rolling-contact bearings:

1. Document the measurement results.
2. Compare the measured values with the comparison values that were recorded commissioning the gear unit was commissioned.
3. Replace defective rolling-contact bearings.
4. Archive the report together with these operating instructions.

Further information

You will find further information on measuring the vibration levels on the rolling-contact bearings in the operating instructions of the measurement sensor, which are part of the complete documentation of the gear unit.

8.2.6 Cleaning the fan and gear unit

Introduction

The gear unit can sustain damage due to inadequate cooling if you operate it with a damaged or soiled fan. Depending on the conditions at the site of installation, it may therefore be necessary to clean the fan and gear unit more frequently than stipulated in the maintenance schedule.

Procedure

Proceed as follows to clean the fan and gear unit:

1. Remove the air guide cover.
2. Remove dirt from the fan impeller, air guide cover, protective grille and housing using a hard brush. Never use a high-pressure cleaning device.
3. Remove any spots of corrosion.
4. Reinstall the air guide cover.
5. Ensure that the air guide cover is correctly fastened.
 Ensure that the fan does not come into contact with the air guide cover.
8.2.7 Cleaning the coarse filter

Procedure

To clean the coarse filter, proceed as follows:
1. Check the coarse filter.
2. Remove the drainage plug.
3. Pull out the strainer and remove the particles of dirt.
4. Replace defective strainers and sealing rings.

Further information

You will find further information on the coarse filter in the operating instructions for the coarse filter, which are part of the complete documentation of the gear unit.

You will find further technical data and control information in the separate data sheet and in the list of equipment, which are part of the complete documentation of the gear unit.

8.2.8 Inspecting the shrink disk

Introduction

The shrink disk inspection is limited to a visual assessment of its condition.

Inspection characteristics

Observe the following points when inspecting the shrink disk:
- Loose bolts
- Damage due to use of force
- Inner ring flush against the outer ring

Further information

You will find further information about the shrink disk in the operating instructions for the shrink disk, which are part of the complete documentation of the gear unit.

8.2.9 General inspection

General inspection of the gear unit by Customer Services

Arrange for Flender Customer Services to perform a general inspection on the gear unit.
Based on their experience, Siemens technicians can best identify whether gear unit parts must be replaced.

8.2.10 Checking that the fastening bolts are tight

Procedure

To check that the fastening bolts are tight, proceed as follows:
1. Observe the information in chapter Tightening procedure (Page 65).
2. Replace any bolts that can no longer be used with new bolts of the same strength class and type.

8.3 Possible faults

The faults listed below are only intended as a troubleshooting guide.

If any faults occur while the unit is still under warranty, do not allow anyone except Flender Customer Services to attempt a repair.

Even after the warranty period has expired, you should still arrange for faults to be rectified by Flender Customer Services.

Note

Loss of warranty

You will invalidate the warranty for the gear unit if you modify it in any way without seeking the approval of Flender beforehand, or if you do not use original spare parts.

Only use original spare parts from Flender. Always arrange for Flender Customer Services to repair any faults that develop while the unit is still under warranty.

Possible faults and how to rectify them

The following table provides an overview of the possible faults and how to rectify them.

<table>
<thead>
<tr>
<th>Possible faults</th>
<th>Causes</th>
<th>Possible remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure monitor triggers an alarm</td>
<td>Oil pressure < 0.5 bar</td>
<td>• Check the oil level at room temperature
• Top up with oil if necessary
• Check the oil pump
• If required, replace the oil pump
• Check the oil filter, and replace if necessary</td>
</tr>
<tr>
<td>(For gear units with pressure lubrication, air-oil cooler or water-oil cooler).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grease escaping at the output shaft</td>
<td>Defective rotary shaft sealing rings</td>
<td>• Inspect the rotary shaft sealing rings and replace if necessary</td>
</tr>
</tbody>
</table>
8.3 Possible faults

<table>
<thead>
<tr>
<th>Possible faults</th>
<th>Causes</th>
<th>Possible remedies</th>
</tr>
</thead>
</table>
| Noise | Damage to the gear teeth | ● Contact Customer Service
● Inspect the toothed components
● If necessary, replace damaged components |
| | The bearing play is excessive. | ● Contact Customer Service
● Adjust bearing play |
| | Defective rolling-contact bearings | ● Contact Customer Service
● Replace defective rolling-contact bearings |
| | Gear unit fastening has worked loose | ● Tighten bolts and nuts to the specified tightening torque
● Replace damaged bolts and nuts |
| Outer surface of gear unit soiled with oil | Inadequate sealing of the housing cover or joints | ● Seal housing cover or joints |
| | Labyrinth seals soiled with oil, incorrect transport position | ● Check oil filling
● Clean labyrinth seals |
| | Static seal defective | ● Check the seals |
| Main drive motor does not start | Motor direction of rotation incorrect | ● Interchange the motor phases |
| | Brake blocked | ● Release the brake
● Check the connections |
| | Backstop cage with sprags incorrectly installed or defective | ● Contact Customer Service
● Install the backstop cage, rotated through 180° - or replace |
| | Overrunning clutch blocked | ● Contact Customer Service
● Replace the overrunning clutch |
| | Overrunning clutch cage with sprags incorrectly installed and/or defective | ● Contact Customer Service
● Install the overrunning clutch cage, rotated through 180° - or replace |
| Main drive motor can start while the auxiliary drive is operational | Defective electrical interlocking between the main and auxiliary motor | ● Check the connections
● If necessary, replace defective devices |
| | Defective speed monitoring | ● Check the connections
● If necessary, replace defective devices |
| Auxiliary drive motor does not start | Overload at the output | ● Reduce the load at the output |
| | Defective auxiliary drive motor | ● Repair or replace motor |
| | Motor brake not released | ● Correct the electrical connection of the motor brake
● If required, replace the motor brake |
| The auxiliary drive motor starts, the main gear unit output shaft does not turn | Motor direction of rotation incorrect | ● Interchange the motor phases |
| | Overrunning clutch cage with sprags incorrectly installed | ● Contact Customer Service
● Install the overrunning clutch cage, rotated through 180° - or replace |
| | Defective overrunning clutch | ● Contact Customer Service
● Replace the overrunning clutch |
<table>
<thead>
<tr>
<th>Possible faults</th>
<th>Causes</th>
<th>Possible remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaks</td>
<td>Inadequate sealing of the housing cover or joints</td>
<td>• Seal housing cover or joints
• Check the seals and if required, replace</td>
</tr>
<tr>
<td></td>
<td>Labyrinth seals oiled up or transport position incorrect</td>
<td>• Check oil filling
• Clean labyrinth seals</td>
</tr>
<tr>
<td></td>
<td>Defective rotary shaft sealing rings</td>
<td>• Inspect the rotary shaft sealing rings and replace if necessary</td>
</tr>
<tr>
<td>Oil is foaming in the gear unit</td>
<td>Preservation agent not completely drained off</td>
<td>• Change the oil</td>
</tr>
<tr>
<td>Oil supply system left in operation for too long at low temperatures</td>
<td>• Switch off the oil supply system
• Degas the oil</td>
<td></td>
</tr>
<tr>
<td>Gear unit too cold in operation</td>
<td>• Switch off the gear unit
• Degas the oil
• Start up without cooling water during cold restart</td>
<td></td>
</tr>
<tr>
<td>Water in the oil</td>
<td>• Take test tube sample to examine oil condition for water penetration
• Have the oil examined by a chemical lab
• Change the oil if necessary</td>
<td></td>
</tr>
<tr>
<td>Oil defoamer has run out</td>
<td>• Examine the oil
• Change the oil if necessary</td>
<td></td>
</tr>
<tr>
<td>Unsuitable mixture of oils</td>
<td>• Examine the oil
• Change the oil if necessary</td>
<td></td>
</tr>
<tr>
<td>Oil escaping from the gear unit</td>
<td>Inadequate sealing of the housing cover or joints</td>
<td>• Check the seals and if required, replace
• Seal housing cover or joints
• Check the compression seals and retighten screws if necessary</td>
</tr>
<tr>
<td></td>
<td>Leaking pipes</td>
<td>• Check the pipes, and replace or seal if necessary</td>
</tr>
<tr>
<td>Oil supply system malfunction</td>
<td>-</td>
<td>• Read the operating instructions for the oil supply system</td>
</tr>
<tr>
<td>Possible faults</td>
<td>Causes</td>
<td>Possible remedies</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Elevated temperature during operation</td>
<td>Oil level in the gear unit housing too high</td>
<td>• Check the oil level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If required, correct the oil level</td>
</tr>
<tr>
<td></td>
<td>Oil is too old</td>
<td>• Check when the last oil change was performed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change the oil if necessary</td>
</tr>
<tr>
<td></td>
<td>Oil is severely contaminated</td>
<td>• Change the oil</td>
</tr>
<tr>
<td></td>
<td>Oil supply system defective</td>
<td>• Check the oil supply system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If necessary, replace defective components</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Read the operating instructions for the oil supply system</td>
</tr>
<tr>
<td></td>
<td>Gear unit with oil cooling system: Cooling liquid flow rate too low or</td>
<td>• Adjust the valves of the supply and return lines completely</td>
</tr>
<tr>
<td></td>
<td>too high</td>
<td>• Check that water and oil can freely flow through the water-oil cooler</td>
</tr>
<tr>
<td></td>
<td>Gear unit with oil cooling system: The oil flow through the water-oil</td>
<td>• Check the oil filter, and replace or clean if necessary</td>
</tr>
<tr>
<td></td>
<td>cooler is too low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On gear units with a fan: Air intake opening in air guide cover or</td>
<td>• Clean the air guide cover and gear unit housing</td>
</tr>
<tr>
<td></td>
<td>gear unit housing is soiled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coolant temperature too high</td>
<td>• Check the temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct the temperature if necessary</td>
</tr>
<tr>
<td></td>
<td>Defective oil pump</td>
<td>• Check the oil pump function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Repair or replace oil pump if required</td>
</tr>
<tr>
<td>Elevated temperature at bearing</td>
<td>Oil level in the gear unit housing too low or too high</td>
<td>• Check the oil level at room temperature</td>
</tr>
<tr>
<td>points</td>
<td></td>
<td>• Top up with oil if necessary</td>
</tr>
<tr>
<td></td>
<td>Oil is too old</td>
<td>• Check when the last oil change was performed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change the oil if necessary</td>
</tr>
<tr>
<td></td>
<td>Oil supply system defective</td>
<td>• Check the oil supply system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If necessary, replace defective components</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Read the operating instructions for the oil supply system</td>
</tr>
<tr>
<td></td>
<td>Defective rolling-contact bearings</td>
<td>• Contact Customer Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inspect the rolling-contact bearings and replace if necessary</td>
</tr>
<tr>
<td>Increased backstop temperature</td>
<td>Damaged backstop</td>
<td>• Contact Customer Service</td>
</tr>
<tr>
<td>with failure of the blocking function</td>
<td></td>
<td>• Inspect the backstop and replace if necessary</td>
</tr>
<tr>
<td>Increased vibration amplitude at the</td>
<td>Defective rolling-contact bearings</td>
<td>• Contact Customer Service</td>
</tr>
<tr>
<td>bearing points</td>
<td></td>
<td>• Inspect the rolling-contact bearings and replace if necessary</td>
</tr>
<tr>
<td>Gear wheels defective</td>
<td></td>
<td>• Contact Customer Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inspect the gear wheels and replace if necessary</td>
</tr>
<tr>
<td>Contamination indicator of the double</td>
<td>Double change-over filter clogged</td>
<td>• Changeover the double change-over filter corresponding to the separate operating</td>
</tr>
<tr>
<td>change-over filter triggers an alarm</td>
<td></td>
<td>instructions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Clean the filter element</td>
</tr>
</tbody>
</table>
Possible faults

<table>
<thead>
<tr>
<th>Possible faults</th>
<th>Causes</th>
<th>Possible remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water in the oil</td>
<td>Oil supply system defective</td>
<td>• Check the oil supply system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If necessary, replace defective components</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Read the operating instructions for the oil supply system</td>
</tr>
<tr>
<td>Machinery compartment fan is blowing cold air onto gear unit: Water condenses</td>
<td></td>
<td>• Install suitable thermal insulation to protect gear unit housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close the air outlet or change the direction of the air outlet using structural measures.</td>
</tr>
<tr>
<td>Climatic conditions</td>
<td></td>
<td>• Contact Customer Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use wet-air filter if necessary</td>
</tr>
<tr>
<td>Oil foams in the oil sump</td>
<td></td>
<td>• Take test tube sample to examine oil condition for water penetration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Have the oil examined by a chemical lab</td>
</tr>
</tbody>
</table>

NOTICE

Skewing can damage the machine shaft and the hollow shaft.

Do not allow the gear unit with hollow shaft to skew as you remove it from the machine shaft. When removing the gear unit using hydraulic pulling equipment, excessive force can be placed on the housing, bearings and other gear unit components. Always check the hollow shaft bearings for damage before reattaching the gear unit to the machine shaft.

WARNING

Risk of injury if the gear unit or its individual parts is released and damage caused by the fact that no support is possible

Evenly release the fastening bolts. When releasing the fastening bolts, make sure that the gear unit is free of mechanical stress. Ensure that the components are adequately supported.

NOTICE

Damage to the gear unit due to the ingress of foreign bodies

Damage to the gear unit due to the ingress of foreign bodies is possible due to the ambient conditions.

Do not allow foreign matter to enter the gear unit.
Servicing

8.3 Possible faults
Service & Support

Contact

When ordering spare parts, requesting a customer service technician or if you have any technical queries, contact our factory or one of our Customer Service addresses:

Flender GmbH
Am Industriepark 2
46562 Voerde
Germany
Tel.: +49 (0)2871 / 92-0
Fax: +49 (0)2871 / 92-1544

Further information

Further information about service and support can be found on the Internet.
Service & Support (https://www.flender.com/service)
Disposal

Disposal of the gear unit

When disposing of the gear unit after its useful life, please observe the following measures:

- Remove operating oil, preservation agents and coolant from the gear unit and dispose of it according to regulations.
- Dispose of the gear unit parts according to applicable national regulations or recycle them.

Environmental protection

Observe the following environmental protection measures for disposal:

- Dispose of or recycle packaging material according to applicable national regulations.
- When changing the oil, collect the used oil in suitable containers. Use oil-binding agents to clean up any oil spillages immediately.
- Store preservative agents separately from used oil.
- Dispose of used oil, preservative agents, oil binding agents and oil-soaked cloths according to the applicable environmental protection regulations.
Spare parts

By stocking the most important spare parts at the installation site you can ensure that the gear unit is ready for use at any time.

Note

Damage to the gear unit due to use of unsuitable spare parts

Only use original spare parts from Flender. Flender shall not accept any warranty claims for spare parts that are not supplied by Flender.

Other spare parts are not tested and approved by Flender. Non-approved spare parts may possibly change the design characteristics of the gear unit and thus impair its active or passive safety.

Flender will accept no liability or warranty whatsoever for damage occurring as a result of the use of non-approved spare parts. The same applies to any accessories which were not supplied by Flender.

The contact address of Flender Customer Services can be found under Service & Support (Page 89).

Information required when ordering spare parts

To order spare parts, refer to the spare-parts list. Only ever use original spare parts from Flender.

When ordering spare parts, please provide the following information:

- Order number with item
- Type and size
- Part number
- Quantity
A.1 Declaration of incorporation

Declaration of incorporation

Company name and full address of the manufacturer:
Flinger GmbH
Am Industriepark 2
46562 Voerde
Deutschland – Germany

Name and address of the person authorised to compile the relevant technical documentation:
Mark Zundel
Flinger GmbH
Am Industriepark 2
46562 Voerde
Deutschland – Germany

Description and identification of the partly completed machinery:
Planetary gear unit
PLANUREX 3L
P2DP, P3DH
Sizes 345 to 500
for operating driven machines

The following "Essential health and safety requirements" of
– Directive 2006/42/EC
Official Journal L 157, 9.6.2006, pages 24-86, Annex I,
are applied and are met:
1.1, 1.1.2, 1.1.3, 1.1.5; 1.2.4.4, 1.2.6; 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.6, 1.3.7, 1.3.8, 1.3.8.1;
1.4.1, 1.4.2; 1.5.1, 1.5.2, 1.5.4, 1.5.5, 1.5.6, 1.5.7, 1.5.8, 1.5.9, 1.5.10, 1.5.11, 1.5.13, 1.5.15;
1.6.1, 1.6.2; 1.7.1, 1.7.1.1, 1.7.2, 1.7.4, 1.7.4.1, 1.7.4.2, 1.7.4.3

The special technical documents as described in Annex VII Part B have been prepared.

The manufacturer undertakes, in response to a reasoned request by national authorities, to transmit in electronic form relevant information about the partly completed machinery.

The partly completed machinery must not be put into service until it has been established that the machinery into which the partly completed machinery is to be incorporated has been declared to be in conformity with the provisions of Directive 2006/42/EC, as appropriate.

Person authorised to issue this declaration of incorporation on behalf of the manufacturer:

Flinger GmbH

Voerde, 2019-03-01

Mark Zundel, Vice President, Applications Plant Voerde

Translation of the original declaration of incorporation
Technical data

B.1 General technical data

Rating plate

The rating plate of the gear unit contains the most important technical data.

Figure B-1 Rating plate

The limits of the intended use of the gear unit are defined on the basis of these data and the contractual agreements concerning the gear unit concluded between Flender and the customer.

Further information

You will find further information on the technical data in the separate data sheet, which is part of the complete documentation of the gear unit.

You will find further information on all important accessories, including their technical data in the list of equipment drawn up specifically for the order, which is part of the complete documentation of the gear unit.
Example code

The following is an example of the code printed in line 5 of the rating plate and explains the meaning of the individual letters and numbers.

```
P 3 D H 345
```

- **Size:**
 - 345 to 500

- **Design of input stage:**
 - P = Planetary stages
 - H = Helical gear stage

- **Output shaft version:**
 - D = Hollow shaft

- **No. of transmission stages:**
 - 2 or 3

- **Gear unit type:**
 - P = Planetary gear unit

Further information

You find further information on the weights and the enveloping surface sound pressure levels in chapters Weights (Page 99) and Enveloping surface sound pressure level (Page 100).

You will find further technical data in the separate data sheet and in the dimension drawings, which are part of the complete documentation of the gear unit.

B.2 Ambient temperature

Unless otherwise contractually agreed, the gear unit must not be exposed to any harmful atmospheres or substances such as corrosive chemical products. By applying various suitable measures, the gear unit can be used in the ambient temperature range extending from -40 °C up to 60 °C. However, this must always be authorised by Flender and specified in the order text.
B.3 Types

The standard gear unit is available as the following types:

![P2DP and P3DH gear units]

B.4 Weights

The precise weights are specified in the dimension drawings in the complete documentation or on the rating plate.

All stated weights refer to units without oil filling or mounted components.

The following table lists the weights (approximate values, in kg) for standard gear units, including shrink disk:

<table>
<thead>
<tr>
<th>Type</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>345</td>
</tr>
<tr>
<td>P2DP</td>
<td>2 520</td>
</tr>
<tr>
<td></td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>15 000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>345</td>
</tr>
<tr>
<td>P3DH</td>
<td>2 620</td>
</tr>
<tr>
<td></td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>15 500</td>
</tr>
</tbody>
</table>
B.5 Enveloping surface sound pressure level

The gear unit has an enveloping surface sound pressure level at a distance of 1 m, which can be taken from the following table.

The measurement is performed using the sound-intensity method according to DIN EN ISO 9614 Part 2.

The workplace of operating personnel is defined as the area on the measuring surface at a distance of 1 m around the gear unit and in the vicinity where persons may be present.

The sound pressure level applies to a gear unit in the warm condition at a drive speed n_1 and output power P_2 according to the rating plate, for measurements carried out on a Flender test bench. If more than one value is stated, the highest speed and power values apply.

The enveloping surface sound pressure level includes any mounted lubrication units. With outgoing and incoming pipes, the flange is considered to be the interface.

The sound pressure levels listed in the table were obtained based on statistical evaluations conducted by the Quality Control department. It can be assumed with statistical certainty that the gear unit complies with these sound pressure levels.

Refer to the following table for the enveloping surface sound pressure level L_{pA} in dB(A) for the gear unit.

The listed enveloping surface sound pressure levels are valid with a tolerance of +3 dB(A) for $n_1 = 1500$ rpm. On gear units with a flange-mounted base, the values are approx. 2 dB(A) higher. If $n_1 = 750$ rpm, the values are approx. 2-3 dB(A) lower.

Table B-2 Enveloping surface sound pressure level

<table>
<thead>
<tr>
<th>Type</th>
<th>n_1</th>
<th>Gear unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>345</td>
</tr>
<tr>
<td>P2DP</td>
<td>26 - 33</td>
<td>91</td>
</tr>
<tr>
<td>P3DH</td>
<td>40 - 112</td>
<td>95</td>
</tr>
</tbody>
</table>
Index

A
Air-oil cooler
 Principle of operation, 28
Anomalies, 75
Attachment points, 45

B
Backstop
 Blocking direction, 26
 Checking the friction linings, 80
 Commissioning, 71
 Design, 24
 Filling with oil, 79
 Principle of operation, 23
 Replacing, 79
 Slipping torque, 26
 Torque limiting, 25
Bearing monitoring
 Acceleration sensor, 36
 Connecting, 63
 Resistance thermometer, 34
 Shock-pulse transducer, 35

C
Coarse filter
 Cleaning, 82
 Coloured markings, 12
 Connecting hoses, 65
 Contact, 89
 Cooling, 26
 Copyright, 10
 Coupling, 31
 Customer Service, 89
 Customer Services, 89

D
Danger of explosion, 16
 Disclaimer, 9
 Disposal, 91
 Documentation landscape, 9

E
Environmental protection, 91
 Equipment features, 20

F
Fan
 Air guide cover, 27
 Principle of operation, 27
Fastening bolts
 Bolt connection class, 66
 Bolts, 65
 Checking for tightness, 83
 Mating threads, 65
 Preload force, 66
 Tightening procedure, 66
 Tightening torque, 66
Fault, 83
 Fault rectification, 83
Final work, 69
Foundation, 47

G
Gear unit equipment, 19
 Gear unit housing, 20
 Gear unit markings, 12
 General inspection, 82

H
Heating
 Commissioning, 73
 Connecting the heating element, 63
 Function, 32
 Heating elements, 32
 Temperature monitor, 33

I
Interval, 77
L
Lubricant, 10

M
Maintenance activities, 77
Maintenance schedule, 77
Measures
 during commissioning, 72
 Prior to commissioning, 71
Mounting position, 45

N
Note about mounting, 45

O
Oil, 10
 Oil filter, 30
 Oil level indicator, 33
 Oil supply system, 29, 31
 Air-oil cooler, 28
 Commissioning, 72
Oil temperature
 Checking, 78
Oil temperature monitoring system
 Connecting the resistance thermometer, 63
 Design, 34
 Resistance thermometer, 34
Operating data, 75
 Oil, 75
Ordering spare parts, 89, 93

P
Pressure monitor, 30
Pressure monitoring, 30
Protective equipment, 14
Pump, 30

R
Rating plate
 Type and size, 98
Reactivating, 18

Rolling-contact bearing
 Measuring the vibration levels, 81
Rotary shaft sealing ring, 21, 22

S
Safety rules, 11
Scope of delivery, 39
Servicing activities, 77
Shaft bearings, 21
Shaft seal, 21
Shipping documents, 39
Shrink disk
 Checking, 82
Speed encoder
 Connecting, 64

T
Taconite seal, 22
Taking the unit out of service, 76
Transport information, 39
Transport symbol, 40
Troubleshooting, 83
Types of danger, 14

U
Unpacking, 46
Used oil, 91
Using the gear unit, 17

W
Warning symbols, 13
Water-oil cooler, 29
FLENDER GEAR UNITS

Planetary gear unit
Operating Instructions 9224en
Edition 03/2019

Flender GmbH
Alfred-Flender-Straße 77
46395 Bocholt
GERMANY

flender.com